Xinyu Li, Lixiang Yan, Linxuan Zhao, Roberto Martínez-Maldonado, D. Gašević
{"title":"CVPE: A Computer Vision Approach for Scalable and Privacy-Preserving Socio-spatial, Multimodal Learning Analytics","authors":"Xinyu Li, Lixiang Yan, Linxuan Zhao, Roberto Martínez-Maldonado, D. Gašević","doi":"10.1145/3576050.3576145","DOIUrl":null,"url":null,"abstract":"Capturing data on socio-spatial behaviours is essential in obtaining meaningful educational insights into collaborative learning and teamwork in co-located learning contexts. Existing solutions, however, have limitations regarding scalability and practicality since they rely largely on costly location tracking systems, are labour-intensive, or are unsuitable for complex learning environments. To address these limitations, we propose an innovative computer-vision-based approach – Computer Vision for Position Estimation (CVPE) – for collecting socio-spatial data in complex learning settings where sophisticated collaborations occur. CVPE is scalable and practical with a fast processing time and only needs low-cost hardware (e.g., cameras and computers). The built-in privacy protection modules also minimise potential privacy and data security issues by masking individuals’ facial identities and provide options to automatically delete recordings after processing, making CVPE a suitable option for generating continuous multimodal/classroom analytics. The potential of CVPE was evaluated by applying it to analyse video data about teamwork in simulation-based learning. The results showed that CVPE extracted socio-spatial behaviours relatively reliably from video recordings compared to indoor positioning data. These socio-spatial behaviours extracted with CVPE uncovered valuable insights into teamwork when analysed with epistemic network analysis. The limitations of CVPE for effective use in learning analytics are also discussed.","PeriodicalId":394433,"journal":{"name":"LAK23: 13th International Learning Analytics and Knowledge Conference","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"LAK23: 13th International Learning Analytics and Knowledge Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3576050.3576145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Capturing data on socio-spatial behaviours is essential in obtaining meaningful educational insights into collaborative learning and teamwork in co-located learning contexts. Existing solutions, however, have limitations regarding scalability and practicality since they rely largely on costly location tracking systems, are labour-intensive, or are unsuitable for complex learning environments. To address these limitations, we propose an innovative computer-vision-based approach – Computer Vision for Position Estimation (CVPE) – for collecting socio-spatial data in complex learning settings where sophisticated collaborations occur. CVPE is scalable and practical with a fast processing time and only needs low-cost hardware (e.g., cameras and computers). The built-in privacy protection modules also minimise potential privacy and data security issues by masking individuals’ facial identities and provide options to automatically delete recordings after processing, making CVPE a suitable option for generating continuous multimodal/classroom analytics. The potential of CVPE was evaluated by applying it to analyse video data about teamwork in simulation-based learning. The results showed that CVPE extracted socio-spatial behaviours relatively reliably from video recordings compared to indoor positioning data. These socio-spatial behaviours extracted with CVPE uncovered valuable insights into teamwork when analysed with epistemic network analysis. The limitations of CVPE for effective use in learning analytics are also discussed.