Differential game-theoretic framework for a demand-side energy management system

Ryohei Arai, Koji Yamamoto, M. Morikura
{"title":"Differential game-theoretic framework for a demand-side energy management system","authors":"Ryohei Arai, Koji Yamamoto, M. Morikura","doi":"10.1109/SmartGridComm.2013.6688052","DOIUrl":null,"url":null,"abstract":"This paper proposes a game-theoretic framework for analyzing the decentralized and centralized control of smart grids based on the availability of information. For the demand response, demand-side actors in smart grids need to obtain various types of information via communication, e.g., a house with a photovoltaic (PV) power system acts efficiently based on the weather forecasts. In contrast, the information required for control is not always available because of communication failure. If information is unavailable, other control methods can cope with loss of the precise information. This paper introduces a comprehensive framework for a demand side management system for PV systems. According to the availability of information to predict the amount of PV power generation, we evaluate three control schemes, i.e., decentralized open-loop control, decentralized feedback control, and centralized control. Two types of decentralized control are formulated using a differential game, whereas centralized control is formulated as an optimal control problem. Considering the output of a PV system, each demand-side actor schedules their power consumption to minimize a cost function, including the disutility, electricity rates, and the supply-demand balance. Simulation results reveal that decentralized open-loop control is useful when information about the predicted data of power generation is available, whereas decentralized feedback control works efficiently when information is unavailable.","PeriodicalId":136434,"journal":{"name":"2013 IEEE International Conference on Smart Grid Communications (SmartGridComm)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Smart Grid Communications (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2013.6688052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

This paper proposes a game-theoretic framework for analyzing the decentralized and centralized control of smart grids based on the availability of information. For the demand response, demand-side actors in smart grids need to obtain various types of information via communication, e.g., a house with a photovoltaic (PV) power system acts efficiently based on the weather forecasts. In contrast, the information required for control is not always available because of communication failure. If information is unavailable, other control methods can cope with loss of the precise information. This paper introduces a comprehensive framework for a demand side management system for PV systems. According to the availability of information to predict the amount of PV power generation, we evaluate three control schemes, i.e., decentralized open-loop control, decentralized feedback control, and centralized control. Two types of decentralized control are formulated using a differential game, whereas centralized control is formulated as an optimal control problem. Considering the output of a PV system, each demand-side actor schedules their power consumption to minimize a cost function, including the disutility, electricity rates, and the supply-demand balance. Simulation results reveal that decentralized open-loop control is useful when information about the predicted data of power generation is available, whereas decentralized feedback control works efficiently when information is unavailable.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
需求侧能源管理系统的微分博弈论框架
本文提出了一个基于信息可用性的智能电网分散控制和集中控制的博弈论框架。对于需求响应,智能电网中的需求侧参与者需要通过通信获取各种类型的信息,例如,拥有光伏(PV)电力系统的房屋根据天气预报有效地行动。相反,由于通信故障,控制所需的信息并不总是可用的。如果信息不可用,其他控制方法可以处理精确信息的丢失。本文介绍了一个光伏系统需求侧管理系统的综合框架。根据预测光伏发电量信息的可用性,我们评估了三种控制方案,即分散开环控制、分散反馈控制和集中控制。两种类型的分散控制是用微分对策来表述的,而集中控制是用最优控制问题来表述的。考虑到光伏系统的输出,每个需求侧参与者安排他们的电力消耗以最小化成本函数,包括负效用,电价和供需平衡。仿真结果表明,分散开环控制在发电预测数据有信息时是有效的,而分散反馈控制在无信息时是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On measurement unit placement for smart electrical grid fault localization Delay makes a difference: Smart grid resilience under remote meter disconnect attack Online energy management strategies for base stations powered by the smart grid On phasor measurement unit placement against state and topology attacks The development of a smart grid co-simulation platform and case study on Vehicle-to-Grid voltage support application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1