Evaluation of Gender Bias in Facial Recognition with Traditional Machine Learning Algorithms

Mustafa Atay, Hailey Gipson, Tony Gwyn, K. Roy
{"title":"Evaluation of Gender Bias in Facial Recognition with Traditional Machine Learning Algorithms","authors":"Mustafa Atay, Hailey Gipson, Tony Gwyn, K. Roy","doi":"10.1109/SSCI50451.2021.9660186","DOIUrl":null,"url":null,"abstract":"The prevalent commercial deployment of automated facial analysis systems such as face recognition as a robust authentication method has increasingly fueled scientific attention. Current machine learning algorithms allow for a relatively reliable detection, recognition, and categorization of face images comprised of age, race, and gender. Algorithms with such biased data are bound to produce skewed results. It leads to a significant decrease in the performance of state-of-the-art models when applied to images of gender or ethnicity groups. In this paper, we study the gender bias in facial recognition with gender balanced and imbalanced training sets using five traditional machine learning algorithms. We aim to report the machine learning classifiers which are inclined towards gender bias and the ones which mitigate it. Miss rates metric is effective in finding out potential bias in predictions. Our study utilizes miss rates metric along with a standard metric such as accuracy, precision or recall to evaluate possible gender bias effectively.","PeriodicalId":255763,"journal":{"name":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI50451.2021.9660186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The prevalent commercial deployment of automated facial analysis systems such as face recognition as a robust authentication method has increasingly fueled scientific attention. Current machine learning algorithms allow for a relatively reliable detection, recognition, and categorization of face images comprised of age, race, and gender. Algorithms with such biased data are bound to produce skewed results. It leads to a significant decrease in the performance of state-of-the-art models when applied to images of gender or ethnicity groups. In this paper, we study the gender bias in facial recognition with gender balanced and imbalanced training sets using five traditional machine learning algorithms. We aim to report the machine learning classifiers which are inclined towards gender bias and the ones which mitigate it. Miss rates metric is effective in finding out potential bias in predictions. Our study utilizes miss rates metric along with a standard metric such as accuracy, precision or recall to evaluate possible gender bias effectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用传统机器学习算法评估人脸识别中的性别偏见
自动面部分析系统(如面部识别)作为一种强大的身份验证方法的普遍商业部署日益引起科学界的关注。当前的机器学习算法允许对由年龄、种族和性别组成的人脸图像进行相对可靠的检测、识别和分类。带有这种偏差数据的算法必然会产生偏差的结果。当应用于性别或种族群体的图像时,它会导致最先进的模型的性能显著下降。本文使用五种传统的机器学习算法,研究了性别平衡和不平衡训练集下人脸识别中的性别偏差。我们的目标是报告倾向于性别偏见和减轻性别偏见的机器学习分类器。缺失率指标在发现预测中的潜在偏差方面是有效的。我们的研究利用缺失率指标以及准确度、精密度或召回率等标准指标来有效评估可能的性别偏见。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Voice Dialog System for Simulated Patient Robot and Detection of Interviewer Nodding Deep Learning Approaches to Remaining Useful Life Prediction: A Survey Evaluation of Graph Convolutions for Spatio-Temporal Predictions of EV-Charge Availability Balanced K-means using Quantum annealing A Study of Transfer Learning in a Generation Constructive Hyper-Heuristic for One Dimensional Bin Packing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1