Yu-Hsin Chen, L. Johnson, D. Gordon, D. Kaganovich, B. Hafizi, M. Babzien, M. Polyanskiy, I. Pogorelsky, M. Palmer
{"title":"Compression of Terawatt Long-Wavelength Laser Pulses Through Backward Raman Amplification","authors":"Yu-Hsin Chen, L. Johnson, D. Gordon, D. Kaganovich, B. Hafizi, M. Babzien, M. Polyanskiy, I. Pogorelsky, M. Palmer","doi":"10.1109/AAC.2018.8659390","DOIUrl":null,"url":null,"abstract":"We propose to compress a high-energy, picosecond long-wave infrared (LWIR) pulse in the plasma using backward Raman amplification (BRA). The apparatus is in a counter-propagating geometry that employs a 3 J, 3 ps CO2 laser pulse as the pump, and a microjoule, broadband femtosecond source as the seed. Simulations show that the amplified pulse can reach ~ 5 TW with a pulse duration of ~ 100 fs. Compared with earlier near-infrared BRA experiments, the proposed configuration uses a significantly shorter pump pulse duration, which may reduce limiting factors such as ion motions and Raman forward scattering. The experiment will be carried out at Accelerator Test Facility at Brookhaven National Laboratory.","PeriodicalId":339772,"journal":{"name":"2018 IEEE Advanced Accelerator Concepts Workshop (AAC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Advanced Accelerator Concepts Workshop (AAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AAC.2018.8659390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We propose to compress a high-energy, picosecond long-wave infrared (LWIR) pulse in the plasma using backward Raman amplification (BRA). The apparatus is in a counter-propagating geometry that employs a 3 J, 3 ps CO2 laser pulse as the pump, and a microjoule, broadband femtosecond source as the seed. Simulations show that the amplified pulse can reach ~ 5 TW with a pulse duration of ~ 100 fs. Compared with earlier near-infrared BRA experiments, the proposed configuration uses a significantly shorter pump pulse duration, which may reduce limiting factors such as ion motions and Raman forward scattering. The experiment will be carried out at Accelerator Test Facility at Brookhaven National Laboratory.