An Improved Crowd Aggregation Prediction Algorithm Based on ARMA

Zhan Gao, Yang Chen, Zhiyong Li, Tao Li, Junjiang He, Yuehao Li
{"title":"An Improved Crowd Aggregation Prediction Algorithm Based on ARMA","authors":"Zhan Gao, Yang Chen, Zhiyong Li, Tao Li, Junjiang He, Yuehao Li","doi":"10.1145/3529466.3529491","DOIUrl":null,"url":null,"abstract":"∗ The gathering of abnormal crowds has brought huge hidden dan-gers to public safety. Accurate prediction of abnormal crowd gathering can effectively prevent and reduce the risk of abnormal gathering, and support reasonable security response decisions. The traditional ARMA algorithm can only make smooth predictions based on past historical data, and cannot predict sudden crowd gathering events. In order to alleviate this problem, this paper proposes an improved ARMA prediction algorithm. By adding the important factor of activity events to perform regression analysis, the parameters of the traditional ARMA prediction algorithm can be adjusted and optimized, so that it can more accurately predict the abnormal clustering trend of people related to mass events in a designated area. The experimental results show the superiority of our algorithm.","PeriodicalId":375562,"journal":{"name":"Proceedings of the 2022 6th International Conference on Innovation in Artificial Intelligence","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 6th International Conference on Innovation in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3529466.3529491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

∗ The gathering of abnormal crowds has brought huge hidden dan-gers to public safety. Accurate prediction of abnormal crowd gathering can effectively prevent and reduce the risk of abnormal gathering, and support reasonable security response decisions. The traditional ARMA algorithm can only make smooth predictions based on past historical data, and cannot predict sudden crowd gathering events. In order to alleviate this problem, this paper proposes an improved ARMA prediction algorithm. By adding the important factor of activity events to perform regression analysis, the parameters of the traditional ARMA prediction algorithm can be adjusted and optimized, so that it can more accurately predict the abnormal clustering trend of people related to mass events in a designated area. The experimental results show the superiority of our algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种改进的基于ARMA的人群聚集预测算法
反常人群的聚集给公共安全带来了巨大的隐患。对人群异常聚集进行准确预测,可以有效预防和降低异常聚集的风险,为合理的安全响应决策提供支持。传统的ARMA算法只能基于过去的历史数据进行平滑预测,无法预测突发的人群聚集事件。为了缓解这一问题,本文提出了一种改进的ARMA预测算法。通过加入活动事件这一重要因素进行回归分析,可以对传统ARMA预测算法的参数进行调整和优化,从而更准确地预测指定区域内群体性事件相关人群的异常聚类趋势。实验结果表明了该算法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DGIC: A Distributed Graph Inference Computing Framework Suitable For Encoder-Decoder GNN Transformer-based Question Text Generation in the Learning System ECA-CBAM: Classification of Diabetic Retinopathy: Classification of diabetic retinopathy by cross-combined attention mechanism Speech Emotion Recognition Exploiting ASR-based and Phonological Knowledge Representations Heterogeneous Collaborative Refining for Real-Time End-to-End Image-Text Retrieval System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1