SLO-aware hybrid store

Priya Sehgal, K. Voruganti, R. Sundaram
{"title":"SLO-aware hybrid store","authors":"Priya Sehgal, K. Voruganti, R. Sundaram","doi":"10.1109/MSST.2012.6232385","DOIUrl":null,"url":null,"abstract":"In the past storage vendors used different types of storage depending upon the type of workload. For example, they used Solid State Drives (SSDs) or FC hard disks (HDD) for online transaction, while SATA for archival type workloads. However, recently many storage vendors are designing hybrid SSD/HDD based systems that can satisfy multiple service level objectives (SLOs) of different workloads all placed together in one storage box, at better cost points. The combination is achieved by using SSDs as a read-write cache while HDD as a permanent store. In this paper we present an SLO based resource management algorithm that controls the amount of SSD given to a particular workload. This algorithm solves following problems: 1) it ensures that workloads do not interfere with each other 2) it ensure that we do not overprovision (cost wise) the amount of SSD allocated to a workload to satisfy its SLO (latency requirement) and 3) dynamically adjust SSD allocated in light of changing workload characteristics (i.e., provide only required amount of SSD). We have implemented our algorithm in a prototype Hybrid Store, and have tested its efficacy using many real workloads. Our algorithm satisfies latency SLOs almost always by utilizing close to optimal amount of SSD and saving 6-50% of SSD space compared to the naïve algorithm.","PeriodicalId":348234,"journal":{"name":"012 IEEE 28th Symposium on Mass Storage Systems and Technologies (MSST)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"012 IEEE 28th Symposium on Mass Storage Systems and Technologies (MSST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSST.2012.6232385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In the past storage vendors used different types of storage depending upon the type of workload. For example, they used Solid State Drives (SSDs) or FC hard disks (HDD) for online transaction, while SATA for archival type workloads. However, recently many storage vendors are designing hybrid SSD/HDD based systems that can satisfy multiple service level objectives (SLOs) of different workloads all placed together in one storage box, at better cost points. The combination is achieved by using SSDs as a read-write cache while HDD as a permanent store. In this paper we present an SLO based resource management algorithm that controls the amount of SSD given to a particular workload. This algorithm solves following problems: 1) it ensures that workloads do not interfere with each other 2) it ensure that we do not overprovision (cost wise) the amount of SSD allocated to a workload to satisfy its SLO (latency requirement) and 3) dynamically adjust SSD allocated in light of changing workload characteristics (i.e., provide only required amount of SSD). We have implemented our algorithm in a prototype Hybrid Store, and have tested its efficacy using many real workloads. Our algorithm satisfies latency SLOs almost always by utilizing close to optimal amount of SSD and saving 6-50% of SSD space compared to the naïve algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
慢速感知混合存储
在过去,存储供应商根据工作负载的类型使用不同类型的存储。例如,他们使用固态硬盘(ssd)或FC硬盘(HDD)进行在线交易,而使用SATA处理归档类型的工作负载。然而,最近许多存储供应商正在设计基于SSD/HDD的混合系统,这些系统可以满足不同工作负载的多个服务水平目标(slo),这些工作负载都放在一个存储盒中,成本更低。这种组合是通过使用ssd作为读写缓存,而HDD作为永久存储来实现的。在本文中,我们提出了一种基于SLO的资源管理算法,该算法可以控制给定给特定工作负载的SSD数量。该算法解决了以下问题:1)确保工作负载不会相互干扰;2)确保我们不会为满足工作负载的SLO(延迟要求)而过度配置(成本方面)分配给工作负载的SSD数量;3)根据工作负载特征的变化动态调整分配的SSD(即只提供所需的SSD数量)。我们已经在一个原型混合商店中实现了我们的算法,并使用许多实际工作负载测试了它的有效性。与naïve算法相比,我们的算法几乎总是通过利用接近最优数量的SSD和节省6-50%的SSD空间来满足延迟slo。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HRAID6ML: A hybrid RAID6 storage architecture with mirrored logging Storage challenges at Los Alamos National Lab Shortcut-JFS: A write efficient journaling file system for phase change memory SLO-aware hybrid store On the speedup of single-disk failure recovery in XOR-coded storage systems: Theory and practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1