{"title":"High performance electrical power systems for unmanned airborne vehicles","authors":"D. DeFreitas","doi":"10.1109/STIER.1988.95465","DOIUrl":null,"url":null,"abstract":"It is noted that unmanned vehicles initially draw power from the launch platform for preflight diagnostics, go/no-go status, and the programming of an initial flight plan. The onboard power system consists of two sources: batteries are used for preflight checkout, postlaunch sequences, and emergency power for autorecovery sequences; and a generator/regulator system is utilized after launch to supply power for all avionics modules. System trade studies on the development of high-performance electrical power systems are discussed. Test results are then presented on four programs: phase control with shaft position sensing; a high-frequency resonant converter, which lowers electromagnetic emissions and system size and weight by using high-frequency sinusoidal resonance as the power conversion vehicle; a hybrid shunt regulator; and switched reluctance systems, a solution for high-temperature (>500 degrees F) power systems on next generation high-performance turbine engines.<<ETX>>","PeriodicalId":356590,"journal":{"name":"Proceedings of the IEEE Southern Tier Technical Conference","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Southern Tier Technical Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STIER.1988.95465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
It is noted that unmanned vehicles initially draw power from the launch platform for preflight diagnostics, go/no-go status, and the programming of an initial flight plan. The onboard power system consists of two sources: batteries are used for preflight checkout, postlaunch sequences, and emergency power for autorecovery sequences; and a generator/regulator system is utilized after launch to supply power for all avionics modules. System trade studies on the development of high-performance electrical power systems are discussed. Test results are then presented on four programs: phase control with shaft position sensing; a high-frequency resonant converter, which lowers electromagnetic emissions and system size and weight by using high-frequency sinusoidal resonance as the power conversion vehicle; a hybrid shunt regulator; and switched reluctance systems, a solution for high-temperature (>500 degrees F) power systems on next generation high-performance turbine engines.<>