Senthilnath Jayavelu, Harikumar Kandath, S. Sundaram
{"title":"Dynamic Area Coverage for Multi-UAV Using Distributed UGVs: A Two-Stage Density Estimation Approach","authors":"Senthilnath Jayavelu, Harikumar Kandath, S. Sundaram","doi":"10.1109/IRC.2018.00033","DOIUrl":null,"url":null,"abstract":"This paper focuses on increasing the duration of autonomous missions performed by Unmanned Aerial Vehicles (UAVs) by deploying a swarm of Unmanned Ground Vehicles (UGVs) as mobile refueling and maintenance stations. Conventionally UAVs are refueled with the fixed centralized Main Charging Stations (MCS). An algorithm is developed for efficiently distributing the swarm of UGVs to act as mobile refueling stations for UAVs. We have proposed a two-stage density estimation approach. In the first-stage, the optimal number of UGVs and its distribution were computed. In the second-stage, the UGVs coordinates with the nearest UAVs dynamically, while minimizing the average distance for refueling. The performance of the algorithm is compared with the static placement of control station for UAVs to coordinate. The numerical simulation shows a considerable advantage of distributed UGVs over the static placement of control stations.","PeriodicalId":416113,"journal":{"name":"2018 Second IEEE International Conference on Robotic Computing (IRC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Second IEEE International Conference on Robotic Computing (IRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRC.2018.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
This paper focuses on increasing the duration of autonomous missions performed by Unmanned Aerial Vehicles (UAVs) by deploying a swarm of Unmanned Ground Vehicles (UGVs) as mobile refueling and maintenance stations. Conventionally UAVs are refueled with the fixed centralized Main Charging Stations (MCS). An algorithm is developed for efficiently distributing the swarm of UGVs to act as mobile refueling stations for UAVs. We have proposed a two-stage density estimation approach. In the first-stage, the optimal number of UGVs and its distribution were computed. In the second-stage, the UGVs coordinates with the nearest UAVs dynamically, while minimizing the average distance for refueling. The performance of the algorithm is compared with the static placement of control station for UAVs to coordinate. The numerical simulation shows a considerable advantage of distributed UGVs over the static placement of control stations.