GOODNESS-OF-FIT TESTS FOR THE NEW WEIBULL-G FAMILY OF DISTRIBUTIONS

K.K. Meribout, N. Seddik-Ameur, H. Goual
{"title":"GOODNESS-OF-FIT TESTS FOR THE NEW WEIBULL-G FAMILY OF DISTRIBUTIONS","authors":"K.K. Meribout, N. Seddik-Ameur, H. Goual","doi":"10.37418/amsj.12.1.15","DOIUrl":null,"url":null,"abstract":"In this paper, we present two New models named New-Weibull-Weibull ($NWW$) and New-Weibull-Rayleigh ($NWR$) from The New-Wei- bull-G family recently introduced that can have a variety of hazard rate shapes that allows to describe observations from different fields of study. The unknown parameters of the $NWW$ and $NWR$ models have been estimated under the maximum likelihood estimation method. Moreover, we construct a modified chi-squared goodness-of-fit test based on the \\textit{Nikulin– Rao–Robson} ($NRR$) statistic to verify the applicability of the proposed $NWW$ and $NWR$ models. The modified test shows that the models studied can be used as a good candidate for analyzing a large variety of real phenomena. The $NWW$ and $NWR$ models are applied upon a five different real complete and right-censored data sets in order to evaluate its practicability and flexibility.","PeriodicalId":231117,"journal":{"name":"Advances in Mathematics: Scientific Journal","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics: Scientific Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37418/amsj.12.1.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present two New models named New-Weibull-Weibull ($NWW$) and New-Weibull-Rayleigh ($NWR$) from The New-Wei- bull-G family recently introduced that can have a variety of hazard rate shapes that allows to describe observations from different fields of study. The unknown parameters of the $NWW$ and $NWR$ models have been estimated under the maximum likelihood estimation method. Moreover, we construct a modified chi-squared goodness-of-fit test based on the \textit{Nikulin– Rao–Robson} ($NRR$) statistic to verify the applicability of the proposed $NWW$ and $NWR$ models. The modified test shows that the models studied can be used as a good candidate for analyzing a large variety of real phenomena. The $NWW$ and $NWR$ models are applied upon a five different real complete and right-censored data sets in order to evaluate its practicability and flexibility.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新weibull-g分布族的拟合优度检验
在本文中,我们提出了两个新模型,分别名为New- weibull - weibull ($NWW$)和New- weibull - rayleigh ($NWR$),它们来自最近推出的New- wei - bull-G家族,可以有各种各样的危险率形状,可以描述来自不同研究领域的观察结果。利用极大似然估计方法对$NWW$和$NWR$模型的未知参数进行了估计。此外,我们基于\textit{Nikulin - Rao-Robson} ($NRR$)统计量构建了一个修正的卡方拟合优度检验,以验证所提出的$NWW$和$NWR$模型的适用性。修正后的试验表明,所研究的模型可以作为分析大量实际现象的良好候选模型。将$NWW$和$NWR$模型应用于五个不同的真实完整和右删减数据集,以评估其实用性和灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A NOVEL METHOD FOR SOLVING FULLY FUZZY SOLID TRANSPORTATIONS PROBLEMS SINGULAR INTEGRAL EQUATIONS FOR A CRACK SUBJECTED NORMAL STRESS IN A HEATED PLATE ORTHOGONAL GENERALIZED ( 𝜎 , 𝜏 ) (σ,τ)-DERIVATIONS IN SEMIPRIME Γ Γ-NEAR RINGS SOME CHARACTERIZATIONS OF TIMELIKE HELICES WITH THE $F$-CONSTANT VECTOR FIELD IN MINKOWSKI SPACE $E_{1}^{3}$} DIFFERENTIABILITY IN THE FRECHET SENSE OF A FUNCTIONAL RELATED TO A HYPERBOLIC PROBLEM WITH POLYNOMIAL NONLINEARITY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1