Anik Das, Md. Mahmudur Rahman, M. A. Matin, N. Amin
{"title":"Bandgap Analysis of InAs/InGaN Quantum Dot Intermediate Band Solar Cell (QDIBSC)","authors":"Anik Das, Md. Mahmudur Rahman, M. A. Matin, N. Amin","doi":"10.1109/ECCE57851.2023.10101673","DOIUrl":null,"url":null,"abstract":"Quantum Dot Intermediate Band Solar Cells (QDIBSC) can be a potential candidate in the field of solar cell research. It is an emerging solar cell. Our aim is to find a suitable material for this type of solar cells. Ternary materials are proved very convincing in recent research for solar cells because its bandgap can be varied. InGaN has been chosen as p type and n type material to investigate this solar cell and we found very significant results. InGaN is an emerging solar cell material. The cells had been simulated by varying the band gap of the material. Maximum efficiency is found at 1.21eV. Efficiency at this bandgap is 30.38% ($J_{SC}=47.98\\ \\text{mA}/\\text{cm}^{2}, V_{OC}=0.7429\\mathrm{V},\\ FF=0.8524$). Thermal stability also has been investigated of the cell. Normalized efficiency of the cell linearly decreases with the increase of operating temperature at the gradient of −0.14%/°C, which indicates better stability of the cell.","PeriodicalId":131537,"journal":{"name":"2023 International Conference on Electrical, Computer and Communication Engineering (ECCE)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Electrical, Computer and Communication Engineering (ECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE57851.2023.10101673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum Dot Intermediate Band Solar Cells (QDIBSC) can be a potential candidate in the field of solar cell research. It is an emerging solar cell. Our aim is to find a suitable material for this type of solar cells. Ternary materials are proved very convincing in recent research for solar cells because its bandgap can be varied. InGaN has been chosen as p type and n type material to investigate this solar cell and we found very significant results. InGaN is an emerging solar cell material. The cells had been simulated by varying the band gap of the material. Maximum efficiency is found at 1.21eV. Efficiency at this bandgap is 30.38% ($J_{SC}=47.98\ \text{mA}/\text{cm}^{2}, V_{OC}=0.7429\mathrm{V},\ FF=0.8524$). Thermal stability also has been investigated of the cell. Normalized efficiency of the cell linearly decreases with the increase of operating temperature at the gradient of −0.14%/°C, which indicates better stability of the cell.