Spoken document summarization using relevant information

Yi-Ting Chen, Shih-Hsiang Lin, H. Wang, Berlin Chen
{"title":"Spoken document summarization using relevant information","authors":"Yi-Ting Chen, Shih-Hsiang Lin, H. Wang, Berlin Chen","doi":"10.1109/ASRU.2007.4430107","DOIUrl":null,"url":null,"abstract":"Extractive summarization usually automatically selects indicative sentences from a document according to a certain target summarization ratio, and then sequences them to form a summary. In this paper, we investigate the use of information from relevant documents retrieved from a contemporary text collection for each sentence of a spoken document to be summarized in a probabilistic generative framework for extractive spoken document summarization. In the proposed methods, the probability of a document being generated by a sentence is modeled by a hidden Markov model (HMM), while the retrieved relevant text documents are used to estimate the HMM's parameters and the sentence's prior probability. The results of experiments on Chinese broadcast news compiled in Taiwan show that the new methods outperform the previous HMM approach.","PeriodicalId":371729,"journal":{"name":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2007.4430107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Extractive summarization usually automatically selects indicative sentences from a document according to a certain target summarization ratio, and then sequences them to form a summary. In this paper, we investigate the use of information from relevant documents retrieved from a contemporary text collection for each sentence of a spoken document to be summarized in a probabilistic generative framework for extractive spoken document summarization. In the proposed methods, the probability of a document being generated by a sentence is modeled by a hidden Markov model (HMM), while the retrieved relevant text documents are used to estimate the HMM's parameters and the sentence's prior probability. The results of experiments on Chinese broadcast news compiled in Taiwan show that the new methods outperform the previous HMM approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用相关信息对口头文件进行总结
摘要抽取通常是按照一定的目标摘要比例自动从文献中选取指示句,然后对其进行排序,形成摘要。在本文中,我们研究了从当代文本集中检索的相关文档信息的使用,这些信息来自口语文档的每个句子,并在抽取口语文档摘要的概率生成框架中进行总结。该方法利用隐马尔可夫模型(HMM)对句子生成文档的概率进行建模,并利用检索到的相关文本文档来估计隐马尔可夫模型的参数和句子的先验概率。在台湾对中文广播新闻进行的实验结果表明,新方法优于之前的HMM方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predictive linear transforms for noise robust speech recognition Development of a phonetic system for large vocabulary Arabic speech recognition Error simulation for training statistical dialogue systems An enhanced minimum classification error learning framework for balancing insertion, deletion and substitution errors Monolingual and crosslingual comparison of tandem features derived from articulatory and phone MLPS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1