On K-Means Cluster Preservation Using Quantization Schemes

D. Turaga, M. Vlachos, O. Verscheure
{"title":"On K-Means Cluster Preservation Using Quantization Schemes","authors":"D. Turaga, M. Vlachos, O. Verscheure","doi":"10.1109/ICDM.2009.12","DOIUrl":null,"url":null,"abstract":"This work examines under what conditions compression methodologies can retain the outcome of clustering operations. We focus on the popular k-Means clustering algorithm and we demonstrate how a properly constructed compression scheme based on post-clustering quantization is capable of maintaining the global cluster structure. Our analytical derivations indicate that a 1-bit moment preserving quantizer per cluster is sufficient to retain the original data clusters. Merits of the proposed compression technique include: a) reduced storage requirements with clustering guarantees, b) data privacy on the original values, and c) shape preservation for data visualization purposes. We evaluate quantization scheme on various high-dimensional datasets, including 1-dimensional and 2-dimensional time-series (shape datasets) and demonstrate the cluster preservation property. We also compare with previously proposed simplification techniques in the time-series area and show significant improvements both on the clustering and shape preservation of the compressed datasets.","PeriodicalId":247645,"journal":{"name":"2009 Ninth IEEE International Conference on Data Mining","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ninth IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2009.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This work examines under what conditions compression methodologies can retain the outcome of clustering operations. We focus on the popular k-Means clustering algorithm and we demonstrate how a properly constructed compression scheme based on post-clustering quantization is capable of maintaining the global cluster structure. Our analytical derivations indicate that a 1-bit moment preserving quantizer per cluster is sufficient to retain the original data clusters. Merits of the proposed compression technique include: a) reduced storage requirements with clustering guarantees, b) data privacy on the original values, and c) shape preservation for data visualization purposes. We evaluate quantization scheme on various high-dimensional datasets, including 1-dimensional and 2-dimensional time-series (shape datasets) and demonstrate the cluster preservation property. We also compare with previously proposed simplification techniques in the time-series area and show significant improvements both on the clustering and shape preservation of the compressed datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于量化方案的k均值聚类保存
这项工作考察了在什么条件下压缩方法可以保留聚类操作的结果。我们关注流行的k-Means聚类算法,并演示了基于聚类后量化的适当构造的压缩方案如何能够保持全局聚类结构。我们的分析推导表明,每簇1位矩保持量化器足以保留原始数据簇。所提出的压缩技术的优点包括:a)通过聚类保证减少了存储需求,b)原始值的数据隐私,以及c)用于数据可视化目的的形状保留。我们在各种高维数据集上评估量化方案,包括一维和二维时间序列(形状数据集),并证明了聚类保持特性。我们还比较了之前提出的时间序列区域的简化技术,并在压缩数据集的聚类和形状保存方面显示出显着的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Probabilistic Similarity Query on Dimension Incomplete Data Outlier Detection Using Inductive Logic Programming GSML: A Unified Framework for Sparse Metric Learning Naive Bayes Classification of Uncertain Data PEGASUS: A Peta-Scale Graph Mining System Implementation and Observations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1