{"title":"On K-Means Cluster Preservation Using Quantization Schemes","authors":"D. Turaga, M. Vlachos, O. Verscheure","doi":"10.1109/ICDM.2009.12","DOIUrl":null,"url":null,"abstract":"This work examines under what conditions compression methodologies can retain the outcome of clustering operations. We focus on the popular k-Means clustering algorithm and we demonstrate how a properly constructed compression scheme based on post-clustering quantization is capable of maintaining the global cluster structure. Our analytical derivations indicate that a 1-bit moment preserving quantizer per cluster is sufficient to retain the original data clusters. Merits of the proposed compression technique include: a) reduced storage requirements with clustering guarantees, b) data privacy on the original values, and c) shape preservation for data visualization purposes. We evaluate quantization scheme on various high-dimensional datasets, including 1-dimensional and 2-dimensional time-series (shape datasets) and demonstrate the cluster preservation property. We also compare with previously proposed simplification techniques in the time-series area and show significant improvements both on the clustering and shape preservation of the compressed datasets.","PeriodicalId":247645,"journal":{"name":"2009 Ninth IEEE International Conference on Data Mining","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ninth IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2009.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
This work examines under what conditions compression methodologies can retain the outcome of clustering operations. We focus on the popular k-Means clustering algorithm and we demonstrate how a properly constructed compression scheme based on post-clustering quantization is capable of maintaining the global cluster structure. Our analytical derivations indicate that a 1-bit moment preserving quantizer per cluster is sufficient to retain the original data clusters. Merits of the proposed compression technique include: a) reduced storage requirements with clustering guarantees, b) data privacy on the original values, and c) shape preservation for data visualization purposes. We evaluate quantization scheme on various high-dimensional datasets, including 1-dimensional and 2-dimensional time-series (shape datasets) and demonstrate the cluster preservation property. We also compare with previously proposed simplification techniques in the time-series area and show significant improvements both on the clustering and shape preservation of the compressed datasets.