Numerical Simulation of Dendritic Solidification

J. Jung, M. M. Chen
{"title":"Numerical Simulation of Dendritic Solidification","authors":"J. Jung, M. M. Chen","doi":"10.1115/imece2000-1481","DOIUrl":null,"url":null,"abstract":"\n It is well known that the dendritic microstructure of alloys is a consequence of morphological instability of the solidification process, which is a result of the coupling of heat and mass transfer with the composition-dependent phase equilibrium condition mediated by the surface energy. There have been many numerical simulations of dendritic solidification. However, many successful simulations of dendritic growth have used non-discrete front tracking method such as artificial source method or phase field method, with demonstrably first order accuracy. Many also found it necessary to continuously inject random noise during simulation. The continuous injection of random noise raises the suspicion that the numerical schemes used may be overly dissipative. The noise is apparently capable of creating nonuniform solidification, but not sufficient to ensure growth with a clear dendritic pattern. In the present study, to rule out the numerical diffusivity as a cause of the damping of dendritic perturbations, artificial perturbations are either not used, or injected only as initial conditions. Under the unstable solidification mode, the initial perturbation triggers the onset of interface instability. Computations were performed for both sub-cooled pure material as well as directional solidification of alloys. The successful simulation of dendritic solidification without the intentional injection of random noise provided evidence that the present method has less numerical diffusion than many existing front tracking methods.","PeriodicalId":306962,"journal":{"name":"Heat Transfer: Volume 3","volume":"216 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer: Volume 3","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2000-1481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is well known that the dendritic microstructure of alloys is a consequence of morphological instability of the solidification process, which is a result of the coupling of heat and mass transfer with the composition-dependent phase equilibrium condition mediated by the surface energy. There have been many numerical simulations of dendritic solidification. However, many successful simulations of dendritic growth have used non-discrete front tracking method such as artificial source method or phase field method, with demonstrably first order accuracy. Many also found it necessary to continuously inject random noise during simulation. The continuous injection of random noise raises the suspicion that the numerical schemes used may be overly dissipative. The noise is apparently capable of creating nonuniform solidification, but not sufficient to ensure growth with a clear dendritic pattern. In the present study, to rule out the numerical diffusivity as a cause of the damping of dendritic perturbations, artificial perturbations are either not used, or injected only as initial conditions. Under the unstable solidification mode, the initial perturbation triggers the onset of interface instability. Computations were performed for both sub-cooled pure material as well as directional solidification of alloys. The successful simulation of dendritic solidification without the intentional injection of random noise provided evidence that the present method has less numerical diffusion than many existing front tracking methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
枝晶凝固的数值模拟
众所周知,合金的枝晶组织是凝固过程中形态不稳定的结果,这是传热传质与表面能介导的依赖成分的相平衡条件耦合的结果。枝晶凝固的数值模拟已经有很多。然而,许多成功的枝晶生长模拟使用了非离散前跟踪方法,如人工源法或相场法,具有明显的一阶精度。许多人还发现有必要在模拟过程中不断注入随机噪声。随机噪声的持续注入使人们怀疑所使用的数值格式可能是过度耗散的。噪声显然能够造成不均匀凝固,但不足以确保生长具有清晰的枝晶图案。在本研究中,为了排除数值扩散率作为树突微扰阻尼的原因,人工微扰要么不使用,要么只作为初始条件注入。在不稳定凝固模式下,初始扰动触发界面不稳定的发生。对过冷纯材料和合金定向凝固进行了计算。在没有故意注入随机噪声的情况下,对枝晶凝固进行了成功的模拟,证明了该方法比许多现有的前沿跟踪方法具有更小的数值扩散。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Heat Transfer Characteristics of Single Droplet Cooling Using a Microscale Heater Array Thermal Modeling for the Consolidation Process of Thermoplastic Composite Filament Winding Parametric Study of the Ablation Characteristics of Absorbing Dielectrics by Short Pulse Laser A Numerical Analysis of Gas Turbine Disks Incorporating Rotating Heat Pipes Neural Network Modeling of Molecular Beam Epitaxy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1