Deep learning for multisensor image resolution enhancement

C. Collins, J. M. Beck, S. Bridges, J. Rushing, S. Graves
{"title":"Deep learning for multisensor image resolution enhancement","authors":"C. Collins, J. M. Beck, S. Bridges, J. Rushing, S. Graves","doi":"10.1145/3149808.3149815","DOIUrl":null,"url":null,"abstract":"We describe a deep learning convolutional neural network (CNN) for enhancing low resolution multispectral satellite imagery without the use of a panchromatic image. For training, low resolution images are used as input and corresponding high resolution images are used as the target output (label). The CNN learns to automatically extract hierarchical features that can be used to enhance low resolution imagery. The trained network can then be effectively used for super-resolution enhancement of low resolution multispectral images where no corresponding high resolution image is available. The CNN enhances all four spectral bands of the low resolution image simultaneously and adjusts pixel values of the low resolution to match the dynamic range of the high resolution image. The CNN yields higher quality images than standard image resampling methods.","PeriodicalId":158183,"journal":{"name":"Proceedings of the 1st Workshop on Artificial Intelligence and Deep Learning for Geographic Knowledge Discovery","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st Workshop on Artificial Intelligence and Deep Learning for Geographic Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3149808.3149815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

We describe a deep learning convolutional neural network (CNN) for enhancing low resolution multispectral satellite imagery without the use of a panchromatic image. For training, low resolution images are used as input and corresponding high resolution images are used as the target output (label). The CNN learns to automatically extract hierarchical features that can be used to enhance low resolution imagery. The trained network can then be effectively used for super-resolution enhancement of low resolution multispectral images where no corresponding high resolution image is available. The CNN enhances all four spectral bands of the low resolution image simultaneously and adjusts pixel values of the low resolution to match the dynamic range of the high resolution image. The CNN yields higher quality images than standard image resampling methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多传感器图像分辨率增强的深度学习
我们描述了一个深度学习卷积神经网络(CNN),用于在不使用全色图像的情况下增强低分辨率多光谱卫星图像。对于训练,使用低分辨率图像作为输入,并使用相应的高分辨率图像作为目标输出(标签)。CNN学习自动提取可用于增强低分辨率图像的分层特征。训练后的网络可以有效地用于无相应高分辨率图像的低分辨率多光谱图像的超分辨率增强。CNN同时增强低分辨率图像的所有四个光谱带,并调整低分辨率图像的像素值以匹配高分辨率图像的动态范围。与标准图像重采样方法相比,CNN产生的图像质量更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image-based classification of GPS noise level using convolutional neural networks for accurate distance estimation Automatic alignment of geographic features in contemporary vector data and historical maps Generating synthetic mobility traffic using RNNs Deep learning for multisensor image resolution enhancement Recognizing terrain features on terrestrial surface using a deep learning model: an example with crater detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1