Efficient 7D aerial pose estimation

B. Grelsson, M. Felsberg, Folke Isaksson
{"title":"Efficient 7D aerial pose estimation","authors":"B. Grelsson, M. Felsberg, Folke Isaksson","doi":"10.1109/WORV.2013.6521919","DOIUrl":null,"url":null,"abstract":"A method for online global pose estimation of aerial images by alignment with a georeferenced 3D model is presented. Motion stereo is used to reconstruct a dense local height patch from an image pair. The global pose is inferred from the 3D transform between the local height patch and the model. For efficiency, the sought 3D similarity transform is found by least-squares minimizations of three 2D subproblems. The method does not require any landmarks or reference points in the 3D model, but an approximate initialization of the global pose, in our case provided by onboard navigation sensors, is assumed. Real aerial images from helicopter and aircraft flights are used to evaluate the method. The results show that the accuracy of the position and orientation estimates is significantly improved compared to the initialization and our method is more robust than competing methods on similar datasets. The proposed matching error computed between the transformed patch and the map clearly indicates whether a reliable pose estimate has been obtained.","PeriodicalId":130461,"journal":{"name":"2013 IEEE Workshop on Robot Vision (WORV)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Workshop on Robot Vision (WORV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WORV.2013.6521919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

A method for online global pose estimation of aerial images by alignment with a georeferenced 3D model is presented. Motion stereo is used to reconstruct a dense local height patch from an image pair. The global pose is inferred from the 3D transform between the local height patch and the model. For efficiency, the sought 3D similarity transform is found by least-squares minimizations of three 2D subproblems. The method does not require any landmarks or reference points in the 3D model, but an approximate initialization of the global pose, in our case provided by onboard navigation sensors, is assumed. Real aerial images from helicopter and aircraft flights are used to evaluate the method. The results show that the accuracy of the position and orientation estimates is significantly improved compared to the initialization and our method is more robust than competing methods on similar datasets. The proposed matching error computed between the transformed patch and the map clearly indicates whether a reliable pose estimate has been obtained.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高效的7D空中姿态估计
提出了一种基于地理参考三维模型的航拍图像在线全局位姿估计方法。利用运动立体技术从图像对中重建密集的局部高度斑块。全局姿态是从局部高度补丁和模型之间的三维变换中推断出来的。为了提高效率,所寻求的三维相似变换是通过三个二维子问题的最小二乘最小化来找到的。该方法不需要3D模型中的任何地标或参考点,但假设由机载导航传感器提供的全局姿态的近似初始化。利用直升机和飞机飞行的真实航拍图像对该方法进行了评价。结果表明,与初始化方法相比,该方法的位置和方向估计精度显著提高,并且在类似数据集上比竞争方法具有更强的鲁棒性。所提出的变换后的补丁与地图之间的匹配误差的计算清楚地表明是否获得了可靠的姿态估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated tuning of the nonlinear complementary filter for an Attitude Heading Reference observer Sensitivity evaluation of embedded code detection in imperceptible structured light sensing Fast iterative five point relative pose estimation A wireless robotic video laparo-endoscope for minimal invasive surgery Rapid explorative direct inverse kinematics learning of relevant locations for active vision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1