{"title":"Multi-step Ahead Time Series Forecasting for Different Data Patterns Based on LSTM Recurrent Neural Network","authors":"L. Yunpeng, Hou Di, Bao Junpeng, Qi Yong","doi":"10.1109/WISA.2017.25","DOIUrl":null,"url":null,"abstract":"Time series prediction problems can play an important role in many areas, and multi-step ahead time series forecast, like river flow forecast, stock price forecast, could help people to make right decisions. Many predictive models do not work very well in multi-step ahead predictions. LSTM (Long Short-Term Memory) is an iterative structure in the hidden layer of the recurrent neural network which could capture the long-term dependency in time series. In this paper, we try to model different types of data patterns, use LSTM RNN for multi-step ahead prediction, and compare the prediction result with other traditional models.","PeriodicalId":204706,"journal":{"name":"2017 14th Web Information Systems and Applications Conference (WISA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th Web Information Systems and Applications Conference (WISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISA.2017.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Time series prediction problems can play an important role in many areas, and multi-step ahead time series forecast, like river flow forecast, stock price forecast, could help people to make right decisions. Many predictive models do not work very well in multi-step ahead predictions. LSTM (Long Short-Term Memory) is an iterative structure in the hidden layer of the recurrent neural network which could capture the long-term dependency in time series. In this paper, we try to model different types of data patterns, use LSTM RNN for multi-step ahead prediction, and compare the prediction result with other traditional models.