Comparison of A Planar and Finite Difference Time Domain Technique to Simulate the Propagation of Electromagnetic Waves in Biological Tissue

M. O’halloran, M. Glavin, E. Jones
{"title":"Comparison of A Planar and Finite Difference Time Domain Technique to Simulate the Propagation of Electromagnetic Waves in Biological Tissue","authors":"M. O’halloran, M. Glavin, E. Jones","doi":"10.1109/MIKON.2006.4345363","DOIUrl":null,"url":null,"abstract":"Due to the recent advances in ultra wide-band (UWB) radar technologies, there has been widespread interest in the possible medical applications of UWB microwave radar. Therefore, the development of accurate numerical techniques to predict the propagation of UWB signals in biological tissue is of great interest to researchers as an aid in developing signal processing algorithms. Two techniques for modeling the propagation of electromagnetic (EM) waves in human tissue are presented and compared in this paper: the planar and finite difference time domain (FDTD) technique. A four layer biological model is considered, three layers of normal tissue, and one layer of cancerous soft tissue (sarcoma). The two modeling techniques are used to predict the response of the model to the UWB input signal, with particular focus on the response of the sarcoma layer. Both the Planar technique and the FDTD technique identify the presence of the soft tissue sarcoma quite easily. However the FDTD technique predicts more subtle phenomena such as multiple reflections, albeit at a high computational cost.","PeriodicalId":315003,"journal":{"name":"2006 International Conference on Microwaves, Radar & Wireless Communications","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference on Microwaves, Radar & Wireless Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIKON.2006.4345363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Due to the recent advances in ultra wide-band (UWB) radar technologies, there has been widespread interest in the possible medical applications of UWB microwave radar. Therefore, the development of accurate numerical techniques to predict the propagation of UWB signals in biological tissue is of great interest to researchers as an aid in developing signal processing algorithms. Two techniques for modeling the propagation of electromagnetic (EM) waves in human tissue are presented and compared in this paper: the planar and finite difference time domain (FDTD) technique. A four layer biological model is considered, three layers of normal tissue, and one layer of cancerous soft tissue (sarcoma). The two modeling techniques are used to predict the response of the model to the UWB input signal, with particular focus on the response of the sarcoma layer. Both the Planar technique and the FDTD technique identify the presence of the soft tissue sarcoma quite easily. However the FDTD technique predicts more subtle phenomena such as multiple reflections, albeit at a high computational cost.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模拟电磁波在生物组织中的传播的平面和时域有限差分技术的比较
随着超宽带(UWB)雷达技术的不断发展,超宽带微波雷达在医学上的应用前景受到了广泛关注。因此,发展精确的数值技术来预测超宽带信号在生物组织中的传播是研究人员非常感兴趣的,因为它有助于开发信号处理算法。本文介绍并比较了电磁波在人体组织中传播的两种建模技术:平面法和时域有限差分法。考虑四层生物模型,三层正常组织,一层癌性软组织(肉瘤)。这两种建模技术用于预测模型对超宽带输入信号的响应,特别关注肉瘤层的响应。平面法和时域有限差分法都能很容易地识别软组织肉瘤的存在。然而,时域有限差分技术预测更微妙的现象,如多次反射,尽管在高计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Polarization-Spectrum Signatures of Above-Water and Surface Targets Microwave Saw Humidity Sensor Non-Iterative Algorithm for Determining Emitter Position in Three-Dimensional Space FDTD Simulations of Resonators with Closely Spaced Modes Ultra-broadband Nonlinear Microwave Monolithic Integrated Circuits in SiGe, GaAs and InP
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1