Performance-driven global placement via adaptive network characterization

M. Ekpanyapong, S. Lim
{"title":"Performance-driven global placement via adaptive network characterization","authors":"M. Ekpanyapong, S. Lim","doi":"10.1109/ASPDAC.2004.1337554","DOIUrl":null,"url":null,"abstract":"Delay minimization continues to be an important objective in the design of high-performance computing system. We present an effective methodology to guide the delay optimization process of the mincut-based global placement via adaptive sequential network characterization. The contribution of this work is the development of a fully automated approach to determine critical parameters related to performance-driven multi-level partitioning-based global placement with retiming. We validate our approach by incorporating this adaptive method into a state-of-the-art global placer GEO. Our A-GEO, the adaptive version of GEO, achieves 67% maximum and 22% average delay improvement over GEO.","PeriodicalId":426349,"journal":{"name":"ASP-DAC 2004: Asia and South Pacific Design Automation Conference 2004 (IEEE Cat. No.04EX753)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASP-DAC 2004: Asia and South Pacific Design Automation Conference 2004 (IEEE Cat. No.04EX753)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2004.1337554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Delay minimization continues to be an important objective in the design of high-performance computing system. We present an effective methodology to guide the delay optimization process of the mincut-based global placement via adaptive sequential network characterization. The contribution of this work is the development of a fully automated approach to determine critical parameters related to performance-driven multi-level partitioning-based global placement with retiming. We validate our approach by incorporating this adaptive method into a state-of-the-art global placer GEO. Our A-GEO, the adaptive version of GEO, achieves 67% maximum and 22% average delay improvement over GEO.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过自适应网络表征实现性能驱动的全局布局
延迟最小化一直是高性能计算系统设计中的一个重要目标。我们提出了一种有效的方法,通过自适应序列网络表征来指导基于分割线的全局布局的延迟优化过程。这项工作的贡献在于开发了一种完全自动化的方法,用于确定与性能驱动的基于多级分区的全局重新定时放置相关的关键参数。我们通过将这种自适应方法结合到最先进的全球砂矿GEO中来验证我们的方法。我们的A-GEO是GEO的自适应版本,比GEO实现了67%的最大延迟和22%的平均延迟改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fixed-outline floorplanning through evolutionary search Optimal design of high fan-in multiplexers via mixed-integer nonlinear programming A V/sub DD/ and temperature independent CMOS voltage reference circuit Energy efficient code generation exploiting reduced bit-width instruction set architectures (rISA) Improvement of saturation characteristics of a frequency-demodulation CMOS image sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1