Francesco Conti, O. Papini, D. Moroni, G. Pieri, M. Reggiannini, M. A. Pascali
{"title":"Analysis of sea surface temperature maps via topological machine learning","authors":"Francesco Conti, O. Papini, D. Moroni, G. Pieri, M. Reggiannini, M. A. Pascali","doi":"10.1109/ITNT57377.2023.10139044","DOIUrl":null,"url":null,"abstract":"Computational methods to leverage topological features occurring in signals and images are currently one of the most innovative trends in applied mathematics. In this paper a pipeline of topological machine learning is applied to the challenging task of classifying four specific marine mesoscale patterns from remote sensing data, i.e., Sea Surface Temperature maps of the southwestern region of the Iberian Peninsula. Our preliminary study achieves an accuracy of 56% in the 4-label classification. Such results are encouraging, especially considering that the data are affected by noise and that there are low-quality/missing data. Also, the paper devises directions for future improvements.","PeriodicalId":296438,"journal":{"name":"2023 IX International Conference on Information Technology and Nanotechnology (ITNT)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IX International Conference on Information Technology and Nanotechnology (ITNT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITNT57377.2023.10139044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Computational methods to leverage topological features occurring in signals and images are currently one of the most innovative trends in applied mathematics. In this paper a pipeline of topological machine learning is applied to the challenging task of classifying four specific marine mesoscale patterns from remote sensing data, i.e., Sea Surface Temperature maps of the southwestern region of the Iberian Peninsula. Our preliminary study achieves an accuracy of 56% in the 4-label classification. Such results are encouraging, especially considering that the data are affected by noise and that there are low-quality/missing data. Also, the paper devises directions for future improvements.