I. Grulkowski, Ana Rodríguez-Aramendía, S. Manzanera, Yiwei Chen, Juan Mompeán, F. Díaz-Doutón, J. Pujol, J. Sebag, P. Artal
{"title":"In vivo imaging of vitreous opacities with full-eye-length SS-OCT\n (Conference Presentation)","authors":"I. Grulkowski, Ana Rodríguez-Aramendía, S. Manzanera, Yiwei Chen, Juan Mompeán, F. Díaz-Doutón, J. Pujol, J. Sebag, P. Artal","doi":"10.1117/12.2509474","DOIUrl":null,"url":null,"abstract":"Transparency of ocular structures is an important factor determining contrast in the retinal image. Although opacities are most commonly formed in the crystalline lens of aging eye (cataract formation), visual function can be also altered by the opacities in the vitreous body. Therefore, macro- and micro-scale visualization of vitreous is clinically relevant since alterations of vitreous organization impact retinal diseases and affect vision. However, optical imaging of the vitreous body is challenging due to its transparency. We demonstrate visualization of vitreous and its opacities in vivo using optical coherence tomography (OCT). We developed a prototype long-depth-range Swept-Source OCT instrument operating at the speed of 30 kA-scans/second and at the central wavelength of 1 μm to perform high-resolution imaging through the entire vitreous depth. The interface with focus-tunable optics has been used to optimize the field of view. 2-D and 3-D OCT data sets of eyes with vitreous opacities were acquired and processed to obtain contrast-enhanced high-resolution images of vitreous. The results demonstrate the ability of the OCT imaging to characterize the opacities that cause floaters. In conclusion, long-depth-range SS-OCT enables volumetric visualization of in vivo microstructural changes in the vitreous body. This instrument might be a useful tool in high-resolution evaluation and surgical management of vitreous opacities.","PeriodicalId":204875,"journal":{"name":"Ophthalmic Technologies XXIX","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ophthalmic Technologies XXIX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2509474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Transparency of ocular structures is an important factor determining contrast in the retinal image. Although opacities are most commonly formed in the crystalline lens of aging eye (cataract formation), visual function can be also altered by the opacities in the vitreous body. Therefore, macro- and micro-scale visualization of vitreous is clinically relevant since alterations of vitreous organization impact retinal diseases and affect vision. However, optical imaging of the vitreous body is challenging due to its transparency. We demonstrate visualization of vitreous and its opacities in vivo using optical coherence tomography (OCT). We developed a prototype long-depth-range Swept-Source OCT instrument operating at the speed of 30 kA-scans/second and at the central wavelength of 1 μm to perform high-resolution imaging through the entire vitreous depth. The interface with focus-tunable optics has been used to optimize the field of view. 2-D and 3-D OCT data sets of eyes with vitreous opacities were acquired and processed to obtain contrast-enhanced high-resolution images of vitreous. The results demonstrate the ability of the OCT imaging to characterize the opacities that cause floaters. In conclusion, long-depth-range SS-OCT enables volumetric visualization of in vivo microstructural changes in the vitreous body. This instrument might be a useful tool in high-resolution evaluation and surgical management of vitreous opacities.