Log-based change data capture from schema-free document stores using MapReduce

Kun Ma, Bo Yang
{"title":"Log-based change data capture from schema-free document stores using MapReduce","authors":"Kun Ma, Bo Yang","doi":"10.1109/CLOUDTECH.2015.7336969","DOIUrl":null,"url":null,"abstract":"Change data capture (CDC) is an approach to data integration that is used to determine and track the data that has changed so that action can be taken using the change data. However, the state of art of change data capture (CDC) in the context of document-oriented NoSQL databases is not mature. Therefore, it is urgent to require a NoSQL CDC solution. Although some manufacturers of NoSQL databases start to research on CDC for NoSQL, these approaches are just for the specific product. In our paper, we propose a log-based CDC approach from abstract schema-free document stores using MapReduce. The process is divided into map and reduce procedures, benefited from MapReduce framework, to generate cell state models (CSMs). In order to infinitely look back to any revision, we enable our proposed CSM to support copy-modify-merge model to manage the revisions of change data. Finally, experimental results show that this approach is independent and appropriate for document stores, with high performance and throughput capacity.","PeriodicalId":293168,"journal":{"name":"2015 International Conference on Cloud Technologies and Applications (CloudTech)","volume":"218 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Cloud Technologies and Applications (CloudTech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLOUDTECH.2015.7336969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Change data capture (CDC) is an approach to data integration that is used to determine and track the data that has changed so that action can be taken using the change data. However, the state of art of change data capture (CDC) in the context of document-oriented NoSQL databases is not mature. Therefore, it is urgent to require a NoSQL CDC solution. Although some manufacturers of NoSQL databases start to research on CDC for NoSQL, these approaches are just for the specific product. In our paper, we propose a log-based CDC approach from abstract schema-free document stores using MapReduce. The process is divided into map and reduce procedures, benefited from MapReduce framework, to generate cell state models (CSMs). In order to infinitely look back to any revision, we enable our proposed CSM to support copy-modify-merge model to manage the revisions of change data. Finally, experimental results show that this approach is independent and appropriate for document stores, with high performance and throughput capacity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用MapReduce从无模式文档存储中捕获基于日志的更改数据
变更数据捕获(CDC)是一种数据集成方法,用于确定和跟踪已更改的数据,以便可以使用变更数据采取行动。然而,在面向文档的NoSQL数据库环境中,变更数据捕获(CDC)的技术水平还不成熟。因此,迫切需要一个NoSQL CDC解决方案。虽然一些NoSQL数据库厂商开始研究针对NoSQL的CDC,但这些方法都是针对特定产品的。在我们的论文中,我们提出了一种基于日志的CDC方法,该方法使用MapReduce从抽象的无模式文档存储中获取。该过程分为map和reduce两个过程,利用MapReduce框架生成细胞状态模型(csm)。为了无限地回顾任何修订,我们使我们建议的CSM支持复制-修改-合并模型来管理更改数据的修订。实验结果表明,该方法是独立的,适用于文档存储,具有较高的性能和吞吐能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Big Data-as-a-service solution for building graph social networks Security challenges in intrusion detection A conceptual framework for personalization of mobile cloud services A multi-criteria analysis of intrusion detection architectures in cloud environments A pareto-based Artificial Bee Colony and product line for optimizing scheduling of VM on cloud computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1