Deep Learning Based Sustainable Material Attribution for Apparels

Yaswanth Kumar Nicherala, Srikrishna Sadula, V. P. Shrinivas
{"title":"Deep Learning Based Sustainable Material Attribution for Apparels","authors":"Yaswanth Kumar Nicherala, Srikrishna Sadula, V. P. Shrinivas","doi":"10.1109/CASE49997.2022.9926684","DOIUrl":null,"url":null,"abstract":"Material attribution is an integral part of product life cycle management. In the apparel fashion industry, material attribution activities are error prone because of their manual and monotonic nature. As a part of intelligent process automation for material attribution, we are proposing a model that uses deep neural networks to automate the classification of apparels based on attributes such as gender, category, subcategory, and color, when an image of an apparel is passed to the model. Our model assures process improvement by accurately extracting all the attributes in one go by using a computationally efficient algorithm that also minimizes the carbon footprint.","PeriodicalId":325778,"journal":{"name":"2022 IEEE 18th International Conference on Automation Science and Engineering (CASE)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 18th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE49997.2022.9926684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Material attribution is an integral part of product life cycle management. In the apparel fashion industry, material attribution activities are error prone because of their manual and monotonic nature. As a part of intelligent process automation for material attribution, we are proposing a model that uses deep neural networks to automate the classification of apparels based on attributes such as gender, category, subcategory, and color, when an image of an apparel is passed to the model. Our model assures process improvement by accurately extracting all the attributes in one go by using a computationally efficient algorithm that also minimizes the carbon footprint.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的服装可持续材料归因
材料归属是产品生命周期管理的重要组成部分。在服装时尚行业中,材料归属活动因其手工性和单调性而容易出错。作为材料归属智能过程自动化的一部分,我们提出了一个模型,当服装图像传递给模型时,该模型使用深度神经网络根据性别、类别、子类别和颜色等属性自动分类服装。我们的模型通过使用计算效率高的算法一次准确提取所有属性来确保流程改进,该算法还可以最大限度地减少碳足迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RailTwin: A Digital Twin Framework For Railway Cross-Domain Fault Diagnosis via Meta-Learning-Based Domain Generalization Automated Sample Pretreatment and Measurement of Benzodiazepines in Serum Using a Biomek i7 Hybrid Workstation and LC-MS/MS Wind energy forecasting using multiple ARIMA models Robust Human Identity Anonymization using Pose Estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1