Electric field induced alignment of carbon nanotubes grown by CVD

A. Obraztsov, A. Zolotukhin, A. Volkov, V.V. Rodaatis, A. Chakhovskoi
{"title":"Electric field induced alignment of carbon nanotubes grown by CVD","authors":"A. Obraztsov, A. Zolotukhin, A. Volkov, V.V. Rodaatis, A. Chakhovskoi","doi":"10.1109/IVNC.2004.1355000","DOIUrl":null,"url":null,"abstract":"In this report, results of the experiments devoted to developing of the method for controllable growth of CNT aligned in different directions were presented. For this purpose the usual setup for CVD was modified to provide shielding of the substrate from electric field existing between the cathode and the anode when the high voltage is applied to activate dc discharge. A mesh mask is used as the electrostatic shield. Similar to the standard CVD process, generation of C/sub 2/ species occurs in the plasma, and then these species are deposited on the substrate surface via the holes in the mask. With appropriate conditions, CNT growth was obtained on various substrates (Ni plate, quartz substrate patterned with Ni thin film stripes). An application of bias voltage between the Ni stripes allows for the partial alignment of CNT along the direction of the electric field between the stripes. This result confirms a possibility to achieve controllable growth of the CNTs.","PeriodicalId":137345,"journal":{"name":"Technical Digest of the 17th International Vacuum Nanoelectronics Conference (IEEE Cat. No.04TH8737)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Digest of the 17th International Vacuum Nanoelectronics Conference (IEEE Cat. No.04TH8737)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVNC.2004.1355000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this report, results of the experiments devoted to developing of the method for controllable growth of CNT aligned in different directions were presented. For this purpose the usual setup for CVD was modified to provide shielding of the substrate from electric field existing between the cathode and the anode when the high voltage is applied to activate dc discharge. A mesh mask is used as the electrostatic shield. Similar to the standard CVD process, generation of C/sub 2/ species occurs in the plasma, and then these species are deposited on the substrate surface via the holes in the mask. With appropriate conditions, CNT growth was obtained on various substrates (Ni plate, quartz substrate patterned with Ni thin film stripes). An application of bias voltage between the Ni stripes allows for the partial alignment of CNT along the direction of the electric field between the stripes. This result confirms a possibility to achieve controllable growth of the CNTs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CVD法生长碳纳米管的电场诱导排列
本文介绍了不同方向排列碳纳米管可控生长方法的实验结果。为此,对CVD通常的设置进行了修改,以便在施加高压激活直流放电时,对阴极和阳极之间存在的电场提供衬底的屏蔽。静电屏蔽采用网状口罩。与标准CVD工艺类似,在等离子体中产生C/亚2/物质,然后这些物质通过掩膜中的孔沉积在衬底表面。在适当的条件下,碳纳米管可以在不同的衬底上生长(Ni板、带有Ni薄膜条纹的石英衬底)。在Ni条纹之间施加偏置电压可以使碳纳米管沿条纹之间电场的方向部分对齐。这一结果证实了实现碳纳米管可控生长的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stable and high emission current from carbon nanotube paste with spin on glass Field emission from polymer flims Properties of single field emitters deduced by use of spherical Fowler-Nordheim theory X-ray generation from large area carbon-based field emitters Development of a MEMS-based gate to enhance cold-cathode electron field emission for space applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1