A framework for initialising a dynamic clustering algorithm: ART2-A

Simon J. Chambers, I. Jarman, P. Lisboa
{"title":"A framework for initialising a dynamic clustering algorithm: ART2-A","authors":"Simon J. Chambers, I. Jarman, P. Lisboa","doi":"10.1109/CIDM.2014.7008678","DOIUrl":null,"url":null,"abstract":"Algorithms in the Adaptive Resonance Theory (ART) family adapt to structural changes in data as new information presents, making it an exciting candidate for dynamic online clustering of big health data. Its use however has largely been restricted to the signal processing field. In this paper we introduce an refinement of the ART2-A method within an adapted separation and concordance (SeCo) framework which has been shown to identify stable and reproducible solutions from repeated initialisations that also provides evidence for an appropriate number of initial clusters that best calibrates the algorithm with the data presented. The results show stable, reproducible solutions for a mix of real-world heath related datasets and well known benchmark datasets, selecting solutions which better represent the underlying structure of the data than using a single measure of separation. The scalability of the method and it's facility for dynamic online clustering makes it suitable for finding structure in big data.","PeriodicalId":117542,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDM.2014.7008678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Algorithms in the Adaptive Resonance Theory (ART) family adapt to structural changes in data as new information presents, making it an exciting candidate for dynamic online clustering of big health data. Its use however has largely been restricted to the signal processing field. In this paper we introduce an refinement of the ART2-A method within an adapted separation and concordance (SeCo) framework which has been shown to identify stable and reproducible solutions from repeated initialisations that also provides evidence for an appropriate number of initial clusters that best calibrates the algorithm with the data presented. The results show stable, reproducible solutions for a mix of real-world heath related datasets and well known benchmark datasets, selecting solutions which better represent the underlying structure of the data than using a single measure of separation. The scalability of the method and it's facility for dynamic online clustering makes it suitable for finding structure in big data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
初始化动态聚类算法的框架:ART2-A
自适应共振理论(ART)家族中的算法随着新信息的出现而适应数据的结构变化,使其成为大健康数据动态在线聚类的令人兴奋的候选算法。然而,它的应用在很大程度上仅限于信号处理领域。在本文中,我们在一个适应的分离和一致性(SeCo)框架内介绍了对ART2-A方法的改进,该框架已被证明可以从重复初始化中识别稳定和可重复的解决方案,这也为适当数量的初始集群提供了证据,这些集群可以用所提供的数据最好地校准算法。结果显示,对于真实世界健康相关数据集和已知基准数据集的混合,选择的解决方案比使用单一的分离度量更能代表数据的底层结构,从而提供了稳定、可重复的解决方案。该方法的可扩展性和动态在线聚类能力使其适用于大数据中的结构查找。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic relevance source determination in human brain tumors using Bayesian NMF Interpolation and extrapolation: Comparison of definitions and survey of algorithms for convex and concave hulls Generalized kernel framework for unsupervised spectral methods of dimensionality reduction Convex multi-task relationship learning using hinge loss Aggregating predictions vs. aggregating features for relational classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1