Studying the natural convection problem in a square cavity by a new vorticity-stream-function approach

P. Mayeli, Tzekih Tsai, G. Sheard
{"title":"Studying the natural convection problem in a square cavity by a new vorticity-stream-function approach","authors":"P. Mayeli, Tzekih Tsai, G. Sheard","doi":"10.14264/b2c1622","DOIUrl":null,"url":null,"abstract":"In this study, a benchmark natural convection problem is studied under a Gay-Lussac type approximation incorporating centrifugal effects in the context of a new vorticity-stream-function approach. This approximation differs from the classic Boussinesq approximation in that density variations are considered in the advection term as well as the gravity term in the momentum equations. Such a treatment invokes Froude number as a non-Boussinesq parameter deviating results from the classic Boussinesq approximation. Numerical simulations of the natural convection in square cavity are performed up to ????=106 and ??=0.3 at ????=0.71 via proposed formulation and results are compared against the conventional Boussinesq approximation in terms of the average and local Nusselt number and entropy generation. Comparing results indicate that, up to ????=105, mentioned approaches are showing almost identical performance, but as the Rayleigh number exceeds 105, formed thermal boundary layer under Gay-Lussac type approximation is slightly thicker compared to the Boussinesq approximation accompanied by a stronger velocity gradient.","PeriodicalId":369158,"journal":{"name":"Proceedings of the 22nd Australasian Fluid Mechanics Conference AFMC2020","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd Australasian Fluid Mechanics Conference AFMC2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14264/b2c1622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this study, a benchmark natural convection problem is studied under a Gay-Lussac type approximation incorporating centrifugal effects in the context of a new vorticity-stream-function approach. This approximation differs from the classic Boussinesq approximation in that density variations are considered in the advection term as well as the gravity term in the momentum equations. Such a treatment invokes Froude number as a non-Boussinesq parameter deviating results from the classic Boussinesq approximation. Numerical simulations of the natural convection in square cavity are performed up to ????=106 and ??=0.3 at ????=0.71 via proposed formulation and results are compared against the conventional Boussinesq approximation in terms of the average and local Nusselt number and entropy generation. Comparing results indicate that, up to ????=105, mentioned approaches are showing almost identical performance, but as the Rayleigh number exceeds 105, formed thermal boundary layer under Gay-Lussac type approximation is slightly thicker compared to the Boussinesq approximation accompanied by a stronger velocity gradient.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用一种新的涡度流函数方法研究方形空腔内的自然对流问题
本文采用一种新的涡度流函数方法,在考虑离心效应的Gay-Lussac近似下研究了一个基准自然对流问题。这种近似与经典的Boussinesq近似的不同之处在于,在动量方程中的平流项和重力项中都考虑了密度变化。这样的处理调用弗劳德数作为非Boussinesq参数,偏离经典Boussinesq近似的结果。在????范围内对方形腔内的自然对流进行了数值模拟=106和??=0.3,????=0.71通过提出的公式和结果与传统的Boussinesq近似在平均和局部努塞尔数和熵生成方面进行了比较。对比结果表明,达到????=105时,上述方法表现出几乎相同的性能,但当瑞利数超过105时,在Gay-Lussac近似下形成的热边界层较Boussinesq近似略厚,速度梯度更强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of hydrogen port injection and direct injection (DI) in a single-cylinder dual-fuel diesel engine Experimental study on the thermal performance of straight and oblique finned, polymer heat sinks Numerical Study of the Flow Behaviour of Discocyte Red Blood Cell Through a Non-uniform Capillary Investigation of Sound Inducing Fluid Dynamics at Pipe Leak and It's Influence on Acoustic Emission Signals Modelling 3-D cellular microfluidics of different plant cells for the prediction of cellular deformations under external mechanical compression: A SPH-CG-based computational study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1