{"title":"Spatiotemporal Bayesian cell population tracking and analysis with lineage construction","authors":"Luke M. A. Beaumont, James Wake, eld, J. Noble","doi":"10.1109/ISBI.2008.4541002","DOIUrl":null,"url":null,"abstract":"Tracking of cell populations in vitro in time lapse microscopy images enables automatic high throughput spatiotemporal measurements of a range of cell cycle mechanics and dynamics. Both in clinical and academic environments, large scale cellular data analysis using such methods stands to facilitate a paradigm shift in approaches to understanding cell biology. In this paper, we present a novel approach to cell population tracking and segmentation. We employ the CONDENSATION algorithm in tandem with Fast Levels Sets and Exclusion Zones for robust tracking and pixel-accurate segmentation. The algorithm feeds its output to a lineage filter. The complete approach is validated in terms of its ability to track and identify nuclei, and by its success in detecting abnormalities in the length of mitosis.","PeriodicalId":184204,"journal":{"name":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2008.4541002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Tracking of cell populations in vitro in time lapse microscopy images enables automatic high throughput spatiotemporal measurements of a range of cell cycle mechanics and dynamics. Both in clinical and academic environments, large scale cellular data analysis using such methods stands to facilitate a paradigm shift in approaches to understanding cell biology. In this paper, we present a novel approach to cell population tracking and segmentation. We employ the CONDENSATION algorithm in tandem with Fast Levels Sets and Exclusion Zones for robust tracking and pixel-accurate segmentation. The algorithm feeds its output to a lineage filter. The complete approach is validated in terms of its ability to track and identify nuclei, and by its success in detecting abnormalities in the length of mitosis.