Network traffic characterisation using flow-based statistics

P. Velan, Jana Medková, Tomás Jirsík, Pavel Čeleda
{"title":"Network traffic characterisation using flow-based statistics","authors":"P. Velan, Jana Medková, Tomás Jirsík, Pavel Čeleda","doi":"10.1109/NOMS.2016.7502924","DOIUrl":null,"url":null,"abstract":"Performing research on live network traffic requires the traffic to be well documented and described. The results of such research are heavily dependent on the particular network. This paper presents a study of network characteristics, which can be used to describe the behaviour of a network. We propose a number of characteristics that can be collected from the networks and evaluate them on five different networks of Masaryk University. The proposed characteristics cover IP, transport and application layers of the network traffic. Moreover, they reflect strong day-night and weekday patterns that are present in most of the networks. Variation in the characteristics between the networks indicates that they can be used for the description and differentiation of the networks. Furthermore, a weak correlation between the chosen characteristics implies their independence and contribution to network description.","PeriodicalId":344879,"journal":{"name":"NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NOMS.2016.7502924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Performing research on live network traffic requires the traffic to be well documented and described. The results of such research are heavily dependent on the particular network. This paper presents a study of network characteristics, which can be used to describe the behaviour of a network. We propose a number of characteristics that can be collected from the networks and evaluate them on five different networks of Masaryk University. The proposed characteristics cover IP, transport and application layers of the network traffic. Moreover, they reflect strong day-night and weekday patterns that are present in most of the networks. Variation in the characteristics between the networks indicates that they can be used for the description and differentiation of the networks. Furthermore, a weak correlation between the chosen characteristics implies their independence and contribution to network description.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用基于流量统计的网络流量特征
对实时网络流量进行研究需要对流量进行良好的记录和描述。这类研究的结果严重依赖于特定的网络。本文提出了一种网络特性的研究方法,可以用来描述网络的行为。我们提出了一些可以从网络中收集的特征,并在马萨里克大学的五个不同网络上对它们进行评估。提出的特征涵盖了网络流量的IP层、传输层和应用层。此外,它们反映了大多数网络中存在的强烈的昼夜和工作日模式。网络之间特征的差异表明它们可以用于网络的描述和区分。此外,所选特征之间的弱相关性意味着它们的独立性和对网络描述的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PIoT: Programmable IoT using Information Centric Networking Workload interleaving with performance guarantees in data centers Outsourced invoice service: Service-clearing as SaaS in mobility service marketplaces Dynamic load management for IMS networks using network function virtualization On-demand dynamic network service deployment over NaaS architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1