Comparison of RNN and Embeddings Methods for Next-item and Last-basket Session-based Recommendations

M. Salampasis, Theodosios Siomos, Alkiviadis Katsalis, K. Diamantaras, Konstantinos Christantonis, Marina Delianidi, Iphigenia Karaveli
{"title":"Comparison of RNN and Embeddings Methods for Next-item and Last-basket Session-based Recommendations","authors":"M. Salampasis, Theodosios Siomos, Alkiviadis Katsalis, K. Diamantaras, Konstantinos Christantonis, Marina Delianidi, Iphigenia Karaveli","doi":"10.1145/3457682.3457755","DOIUrl":null,"url":null,"abstract":"Recurrent Neural Networks (RNNs) have been shown to perform very effectively in session-based recommendation settings, when compared to other commonly used methods that consider the last viewed item of the user and precomputed item-to-item similarities. However, there is little systematic study on how RNNs perform in comparison to methods that use embeddings for item representation for Collaborative Filtering. In this paper we use two industry datasets to compare RNNs with other sequential recommenders that use various embedding methods to represent items. The first dataset corresponds to a typical e-commerce session-based scenario demanding effective next-item recommendation. The second dataset represents a last-basket prediction setting. Results show that although the RNN greatly outperforms embedding methods in the next-item scenario, the dynamic nature of the RNNs has not the same positive impact in the last-basket prediction task. We also present and test a framework that enables the hybrid utilization of text content and item sequences using embeddings. Finally, we report on experiments with reranking methods that demonstrate the effectiveness of simple and practical methods, using item categories, to improve the results.","PeriodicalId":142045,"journal":{"name":"2021 13th International Conference on Machine Learning and Computing","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 13th International Conference on Machine Learning and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3457682.3457755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Recurrent Neural Networks (RNNs) have been shown to perform very effectively in session-based recommendation settings, when compared to other commonly used methods that consider the last viewed item of the user and precomputed item-to-item similarities. However, there is little systematic study on how RNNs perform in comparison to methods that use embeddings for item representation for Collaborative Filtering. In this paper we use two industry datasets to compare RNNs with other sequential recommenders that use various embedding methods to represent items. The first dataset corresponds to a typical e-commerce session-based scenario demanding effective next-item recommendation. The second dataset represents a last-basket prediction setting. Results show that although the RNN greatly outperforms embedding methods in the next-item scenario, the dynamic nature of the RNNs has not the same positive impact in the last-basket prediction task. We also present and test a framework that enables the hybrid utilization of text content and item sequences using embeddings. Finally, we report on experiments with reranking methods that demonstrate the effectiveness of simple and practical methods, using item categories, to improve the results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于下一项和最后一篮会话推荐的RNN和嵌入方法的比较
递归神经网络(RNNs)在基于会话的推荐设置中表现得非常有效,与其他常用的方法相比,这些方法考虑了用户最后查看的物品和预先计算的物品之间的相似性。然而,很少有关于rnn与使用嵌入来表示协同过滤的项目的方法相比表现如何的系统研究。在本文中,我们使用两个行业数据集来比较rnn与其他使用各种嵌入方法来表示项目的顺序推荐。第一个数据集对应于一个典型的基于电子商务会话的场景,需要有效的下一项推荐。第二个数据集表示最后一篮预测设置。结果表明,尽管RNN在下一项场景中大大优于嵌入方法,但RNN的动态特性在最后一篮预测任务中没有同样的积极影响。我们还提出并测试了一个框架,该框架允许使用嵌入混合使用文本内容和项目序列。最后,我们报告了用重新排序方法的实验,证明了简单实用的方法的有效性,使用项目分类,以改善结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Corpus Construction and Entity Recognition for the Field of Industrial Robot Fault Diagnosis GCN2-NAA: Two-stage Graph Convolutional Networks with Node-Aware Attention for Joint Entity and Relation Extraction A Practical Indoor and Outdoor Seamless Navigation System Based on Electronic Map and Geomagnetism SC-DGCN: Sentiment Classification Based on Densely Connected Graph Convolutional Network Bird Songs Recognition Based on Ensemble Extreme Learning Machine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1