Automated casing event detection in persistent video surveillance

Daniel T. Schmitt, S. Kurkowski, M. Mendenhall
{"title":"Automated casing event detection in persistent video surveillance","authors":"Daniel T. Schmitt, S. Kurkowski, M. Mendenhall","doi":"10.1109/ISI.2009.5137286","DOIUrl":null,"url":null,"abstract":"An increase volume of surveillance video is being collected, by various organizations, which has led to a need for automated video systems in order to reduce reviewing time. Using persistent video gathered from an aircraft overhead, as is done with unmanned aerial systems in Iraq and Afghanistan, we get a birds-eye view of vehicular activity. From these activities we can use a model to detect suspicious surveillance activity (casing). This paper builds a model to detect casing events and tests it using Global Positioning System (GPS) tracks generated from vehicles driving in an urban area to show the effectiveness of the model. The results show that several vehicles can be monitored at once in real-time. Additionally, the model detects when vehicles are casing buildings and which buildings they are targeting.","PeriodicalId":210911,"journal":{"name":"2009 IEEE International Conference on Intelligence and Security Informatics","volume":"173 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Intelligence and Security Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2009.5137286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An increase volume of surveillance video is being collected, by various organizations, which has led to a need for automated video systems in order to reduce reviewing time. Using persistent video gathered from an aircraft overhead, as is done with unmanned aerial systems in Iraq and Afghanistan, we get a birds-eye view of vehicular activity. From these activities we can use a model to detect suspicious surveillance activity (casing). This paper builds a model to detect casing events and tests it using Global Positioning System (GPS) tracks generated from vehicles driving in an urban area to show the effectiveness of the model. The results show that several vehicles can be monitored at once in real-time. Additionally, the model detects when vehicles are casing buildings and which buildings they are targeting.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
持续视频监控中的自动套管事件检测
各组织正在收集越来越多的监视录像,这导致需要自动录像系统,以便减少审查时间。利用从头顶的飞机上持续收集的视频,就像在伊拉克和阿富汗使用的无人驾驶飞机系统一样,我们可以鸟瞰车辆的活动。从这些活动中,我们可以使用一个模型来检测可疑的监视活动(套管)。本文建立了套管事件的检测模型,并利用城市车辆行驶轨迹的全球定位系统(GPS)对模型进行了测试,验证了模型的有效性。结果表明,可以同时对多辆车进行实时监控。此外,该模型还可以检测车辆何时包围建筑物以及它们的目标是哪些建筑物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Social network classification incorporating link type values Weaving ontologies to support digital forensic analysis Building a better password: The role of cognitive load in information security training Web opinions analysis with scalable distance-based clustering A Higher Order Collective Classifier for detecting and classifying network events
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1