Acoustic Event Classification Using Multi-Resolution HMM

P. Baggenstoss
{"title":"Acoustic Event Classification Using Multi-Resolution HMM","authors":"P. Baggenstoss","doi":"10.23919/EUSIPCO.2018.8553131","DOIUrl":null,"url":null,"abstract":"Real-world acoustic events span a wide range of time and frequency resolutions, from short clicks to longer tonals. This is a challenge for the hidden Markov model (HMM), which uses a fixed segmentation and feature extraction, forcing a compromise between time and frequency resolution. The multiresolution HMM (MR-HMM) is an extension of the HMM that assumes not only an underlying (hidden) random state sequence, but also an underlying random segmentation, with segments spanning a wide range of sizes and processed using a variety of feature extraction methods. It is shown that the MR-HMM alone, as an acoustic event classifier, has performance comparable to state of the art discriminative classifiers on three open data sets. However, as a generative classifier, the MR-HMM models the underlying data generation process and can generate synthetic data, allowing weaknesses of individual class models to be discovered and corrected. To demonstrate this point, the MR-HMM is combined with auxiliary features that capture temporal information, resulting in significantly improved performance.","PeriodicalId":303069,"journal":{"name":"2018 26th European Signal Processing Conference (EUSIPCO)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2018.8553131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Real-world acoustic events span a wide range of time and frequency resolutions, from short clicks to longer tonals. This is a challenge for the hidden Markov model (HMM), which uses a fixed segmentation and feature extraction, forcing a compromise between time and frequency resolution. The multiresolution HMM (MR-HMM) is an extension of the HMM that assumes not only an underlying (hidden) random state sequence, but also an underlying random segmentation, with segments spanning a wide range of sizes and processed using a variety of feature extraction methods. It is shown that the MR-HMM alone, as an acoustic event classifier, has performance comparable to state of the art discriminative classifiers on three open data sets. However, as a generative classifier, the MR-HMM models the underlying data generation process and can generate synthetic data, allowing weaknesses of individual class models to be discovered and corrected. To demonstrate this point, the MR-HMM is combined with auxiliary features that capture temporal information, resulting in significantly improved performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多分辨率HMM的声事件分类
现实世界的声学事件跨越了广泛的时间和频率分辨率,从短的点击到较长的音调。这对隐马尔可夫模型(HMM)来说是一个挑战,隐马尔可夫模型使用固定的分割和特征提取,迫使在时间和频率分辨率之间做出妥协。多分辨率HMM (MR-HMM)是HMM的扩展,它不仅假设底层的(隐藏的)随机状态序列,而且假设底层的随机分割,其中的片段跨越了广泛的大小范围,并使用各种特征提取方法进行处理。结果表明,作为一种声学事件分类器,MR-HMM在三个开放数据集上的性能可与最先进的判别分类器相媲美。然而,作为一种生成分类器,MR-HMM对底层数据生成过程进行建模,可以生成合成数据,从而发现和纠正单个类模型的弱点。为了证明这一点,MR-HMM与捕获时间信息的辅助特征相结合,从而显著提高了性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Missing Sample Estimation Based on High-Order Sparse Linear Prediction for Audio Signals Multi-Shot Single Sensor Light Field Camera Using a Color Coded Mask Knowledge-Aided Normalized Iterative Hard Thresholding Algorithms for Sparse Recovery Two-Step Hybrid Multiuser Equalizer for Sub-Connected mmWave Massive MIMO SC-FDMA Systems How Much Will Tiny IoT Nodes Profit from Massive Base Station Arrays?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1