Privacy-Preserving Collaborative Data Anonymization with Sensitive Quasi-Identifiers

Kok-Seng Wong, Nguyen Anh Tu, Dinh-Mao Bui, S. Ooi, M. Kim
{"title":"Privacy-Preserving Collaborative Data Anonymization with Sensitive Quasi-Identifiers","authors":"Kok-Seng Wong, Nguyen Anh Tu, Dinh-Mao Bui, S. Ooi, M. Kim","doi":"10.1109/CMI48017.2019.8962140","DOIUrl":null,"url":null,"abstract":"Collaborative anonymization deals with a group of respondents in a distributed environment. Unlike in centralized settings, no respondent is willing to reveal his or her records to any party due to the privacy concerns. This creates a challenge for anonymization, and it requires a level of trust among respondents. In this paper, we study a collaborative anonymization protocol that aims to increase the confidence of respondents during data collection. Unlike in existing works, our protocol does not reveal the complete set of quasi-identifier (QID) to the data collector (e.g., agency) before and after the data anonymization process. Because QID can be both sensitive values and identifying values, we allow the respondents to hide sensitive-QID attributes from other parties. Our protocol ensures that the desired protection level (i.e., k-anonymity) can be verified before the respondents submit their records to the agency. Furthermore, we allow honest respondents to indict a malicious agency if it modifies the intermediate results or not following the protocol faithfully.","PeriodicalId":142770,"journal":{"name":"2019 12th CMI Conference on Cybersecurity and Privacy (CMI)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 12th CMI Conference on Cybersecurity and Privacy (CMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMI48017.2019.8962140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Collaborative anonymization deals with a group of respondents in a distributed environment. Unlike in centralized settings, no respondent is willing to reveal his or her records to any party due to the privacy concerns. This creates a challenge for anonymization, and it requires a level of trust among respondents. In this paper, we study a collaborative anonymization protocol that aims to increase the confidence of respondents during data collection. Unlike in existing works, our protocol does not reveal the complete set of quasi-identifier (QID) to the data collector (e.g., agency) before and after the data anonymization process. Because QID can be both sensitive values and identifying values, we allow the respondents to hide sensitive-QID attributes from other parties. Our protocol ensures that the desired protection level (i.e., k-anonymity) can be verified before the respondents submit their records to the agency. Furthermore, we allow honest respondents to indict a malicious agency if it modifies the intermediate results or not following the protocol faithfully.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有敏感准标识符的隐私保护协同数据匿名化
协作匿名化处理分布式环境中的一组应答者。与集中式设置不同,由于隐私问题,没有受访者愿意向任何一方透露他或她的记录。这给匿名化带来了挑战,它需要受访者之间一定程度的信任。在本文中,我们研究了一种协作匿名化协议,旨在提高受访者在数据收集过程中的信心。与现有的工作不同,我们的协议在数据匿名化过程前后都没有向数据收集者(如机构)透露完整的准标识符(QID)集。由于QID既可以是敏感值,也可以是标识值,因此我们允许应答者对其他方隐藏敏感QID属性。我们的协议确保在受访者向机构提交他们的记录之前,可以验证所需的保护级别(即k-匿名)。此外,我们允许诚实的受访者起诉恶意机构,如果它修改中间结果或不忠实地遵循协议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Edge-computing enhanced privacy protection for industrial ecosystems in the context of SMEs Towards Formal Methods of IoT Application Layer Protocols Privacy in the toolbox of freedom Privacy-Preserving Collaborative Data Anonymization with Sensitive Quasi-Identifiers [Copyright notice]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1