Crowd Abnormality Detection Using Optical Flow and GLCM-Based Texture Features

R. Lalit, R. Purwar
{"title":"Crowd Abnormality Detection Using Optical Flow and GLCM-Based Texture Features","authors":"R. Lalit, R. Purwar","doi":"10.4018/jitr.2022010110","DOIUrl":null,"url":null,"abstract":"Detection of abnormal crowd behavior is one of the important tasks in real-time video surveillance systems for public safety in public places such as subway, shopping malls, sport complexes and various other public gatherings. Due to high density crowded scenes, the detection of crowd behavior becomes a tedious task. Hence, crowd behavior analysis becomes a hot topic of research and requires an approach with higher rate of detection. In this work, the focus is on the crowd management and present an end-to-end model for crowd behavior analysis. A feature extraction-based model using contrast, entropy, homogeneity, and uniformity features to determine the threshold on normal and abnormal activity has been proposed in this paper. The crowd behavior analysis is measured in terms of receiver operating characteristic curve (ROC) & area under curve (AUC) for UMN dataset for the proposed model and compared with other crowd analysis methods in literature to prove its worthiness. YouTube video sequences also used for anomaly detection.","PeriodicalId":296080,"journal":{"name":"J. Inf. Technol. Res.","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Inf. Technol. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jitr.2022010110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Detection of abnormal crowd behavior is one of the important tasks in real-time video surveillance systems for public safety in public places such as subway, shopping malls, sport complexes and various other public gatherings. Due to high density crowded scenes, the detection of crowd behavior becomes a tedious task. Hence, crowd behavior analysis becomes a hot topic of research and requires an approach with higher rate of detection. In this work, the focus is on the crowd management and present an end-to-end model for crowd behavior analysis. A feature extraction-based model using contrast, entropy, homogeneity, and uniformity features to determine the threshold on normal and abnormal activity has been proposed in this paper. The crowd behavior analysis is measured in terms of receiver operating characteristic curve (ROC) & area under curve (AUC) for UMN dataset for the proposed model and compared with other crowd analysis methods in literature to prove its worthiness. YouTube video sequences also used for anomaly detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于光流和glcm纹理特征的人群异常检测
人群异常行为检测是地铁、商场、体育场馆等公共场所公共安全实时视频监控系统的重要任务之一。由于高密度的拥挤场景,人群行为的检测成为一项繁琐的任务。因此,群体行为分析成为研究的热点,对检测率更高的方法提出了更高的要求。在这项工作中,重点关注人群管理,并提出了一个端到端的人群行为分析模型。本文提出了一种基于特征提取的模型,利用对比度、熵、均匀性和均匀性特征来确定正常和异常活动的阈值。针对所提出的模型,用UMN数据集的受试者工作特征曲线(ROC)和曲线下面积(AUC)来测量人群行为分析,并与文献中其他人群分析方法进行比较,以证明其价值。YouTube视频序列也用于异常检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Benchmarking Serverless Computing: Performance and Usability MAC Protocol Analysis for Wireless Sensor Networks Prognostic Model for the Risk of Coronavirus Disease (COVID-19) Using Fuzzy Logic Modeling Evaluation of Teachers' Innovation and Entrepreneurship Ability in Universities Based on Artificial Neural Networks Cluster-Based Vehicle Routing on Road Segments in Dematerialised Traffic Infrastructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1