{"title":"SnapperGPS","authors":"J. Beuchert, A. Rogers","doi":"10.1145/3485730.3485931","DOIUrl":null,"url":null,"abstract":"Snapshot GNSS is a more energy-efficient approach to location estimation than traditional GNSS positioning methods. This is beneficial for applications with long deployments on battery such as wildlife tracking. However, only a few snapshot GNSS implementations have been presented so far and all have disadvantages. Most significantly, they typically require the GNSS signals to be captured with a certain minimum resolution, which demands complex receiver hardware capable of capturing multi-bit data at sampling rates of 16 MHz and more. By contrast, we develop fast algorithms that reliably estimate locations from twelve-millisecond signals that are sampled at just 4 MHz and quantised with only a single bit per sample. This allows us to build a snapshot receiver at an unmatched low cost of $14, which can acquire one position per hour for a year. On a challenging public dataset with thousands of snapshots from real-world scenarios, our system achieves 97% reliability and 11 m median accuracy, comparable to existing solutions with more complex and expensive hardware and higher energy consumption. We provide an open implementation of the algorithms as well as a public web service for cloud-based location estimation from low-quality GNSS signal snapshots.","PeriodicalId":356322,"journal":{"name":"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3485730.3485931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Snapshot GNSS is a more energy-efficient approach to location estimation than traditional GNSS positioning methods. This is beneficial for applications with long deployments on battery such as wildlife tracking. However, only a few snapshot GNSS implementations have been presented so far and all have disadvantages. Most significantly, they typically require the GNSS signals to be captured with a certain minimum resolution, which demands complex receiver hardware capable of capturing multi-bit data at sampling rates of 16 MHz and more. By contrast, we develop fast algorithms that reliably estimate locations from twelve-millisecond signals that are sampled at just 4 MHz and quantised with only a single bit per sample. This allows us to build a snapshot receiver at an unmatched low cost of $14, which can acquire one position per hour for a year. On a challenging public dataset with thousands of snapshots from real-world scenarios, our system achieves 97% reliability and 11 m median accuracy, comparable to existing solutions with more complex and expensive hardware and higher energy consumption. We provide an open implementation of the algorithms as well as a public web service for cloud-based location estimation from low-quality GNSS signal snapshots.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Video Transmission Strategy Based on Ising Machine Wavoice: A Noise-resistant Multi-modal Speech Recognition System Fusing mmWave and Audio Signals Experimental Scalability Study of Consortium Blockchains with BFT Consensus for IoT Automotive Use Case MoRe-Fi: Motion-robust and Fine-grained Respiration Monitoring via Deep-Learning UWB Radar FedMask
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1