{"title":"Radar signature validation by comparison to measured data","authors":"B.B. Halama, D.J. Andersh, A. Terzuoli","doi":"10.1109/APS.1993.385457","DOIUrl":null,"url":null,"abstract":"Monostatic radar signature measurement data are compared to CADDSCAT synthetic predictions for a standard set of primitive and complex targets. Prediction accuracy is compared for temporal, spatial, and spectral signature accuracy. The limitations of the CADDSCAT asymptotic predictions are assessed. CADDSCAT's implementation of the PO (physical optics), ILDC (incremental length diffraction coefficient), and SBR (shooting and bouncing rays) prediction methods is shown to provide excellent first-order radar signature predictions for complex, electrically large targets. The target measurements used have highlighted the limitation of PO-only predictions. The extension of the PO predictions to specular predictions of dielectric-coated targets was validated.<<ETX>>","PeriodicalId":138141,"journal":{"name":"Proceedings of IEEE Antennas and Propagation Society International Symposium","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE Antennas and Propagation Society International Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APS.1993.385457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Monostatic radar signature measurement data are compared to CADDSCAT synthetic predictions for a standard set of primitive and complex targets. Prediction accuracy is compared for temporal, spatial, and spectral signature accuracy. The limitations of the CADDSCAT asymptotic predictions are assessed. CADDSCAT's implementation of the PO (physical optics), ILDC (incremental length diffraction coefficient), and SBR (shooting and bouncing rays) prediction methods is shown to provide excellent first-order radar signature predictions for complex, electrically large targets. The target measurements used have highlighted the limitation of PO-only predictions. The extension of the PO predictions to specular predictions of dielectric-coated targets was validated.<>