Zheng Hongtao, Lin Feng, Liu Lian-gen, Jian Jingping, Xu Dehong
{"title":"Torque ripple minimization in switched reluctance motors using fuzzy-neural network inverse learning control","authors":"Zheng Hongtao, Lin Feng, Liu Lian-gen, Jian Jingping, Xu Dehong","doi":"10.1109/PEDS.2003.1283148","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is the development of fuzzy-neural network (FNN) inverse learning control algorithms for torque-ripple minimization of SRMs. The approach consists of two FNN modules, which spare the same weight values. The learning FNN module is used to adjust the weight values on-line based on observations of the SRMs' (T-i-/spl theta/) input-output relationship in order to form an approximate dynamic inverse model i(T, /spl theta/) of SRMs. The controlling FNN module is used to predict the SRMs phase current waveforms required to follow a desired torque command. Detailed simulation results show good response characteristics for a four-phase SRM.","PeriodicalId":106054,"journal":{"name":"The Fifth International Conference on Power Electronics and Drive Systems, 2003. PEDS 2003.","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Fifth International Conference on Power Electronics and Drive Systems, 2003. PEDS 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEDS.2003.1283148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The purpose of this paper is the development of fuzzy-neural network (FNN) inverse learning control algorithms for torque-ripple minimization of SRMs. The approach consists of two FNN modules, which spare the same weight values. The learning FNN module is used to adjust the weight values on-line based on observations of the SRMs' (T-i-/spl theta/) input-output relationship in order to form an approximate dynamic inverse model i(T, /spl theta/) of SRMs. The controlling FNN module is used to predict the SRMs phase current waveforms required to follow a desired torque command. Detailed simulation results show good response characteristics for a four-phase SRM.