Axonal bouton modeling, detection and distribution analysis for the study of neural circuit organization and plasticity

Christina A. Hallock, I. Ozgunes, Ramamurthy Bhagavatula, G. Rohde, J. C. Crowley, C. E. Onorato, A. Mavalankar, A. Chebira, C. H. Tan, Markus Püschel, J. Kovacevic
{"title":"Axonal bouton modeling, detection and distribution analysis for the study of neural circuit organization and plasticity","authors":"Christina A. Hallock, I. Ozgunes, Ramamurthy Bhagavatula, G. Rohde, J. C. Crowley, C. E. Onorato, A. Mavalankar, A. Chebira, C. H. Tan, Markus Püschel, J. Kovacevic","doi":"10.1109/ISBI.2008.4540958","DOIUrl":null,"url":null,"abstract":"We propose a novel method for axonal bouton modeling and automated detection in populations of labeled neurons, as well as bouton distribution analysis for the study of neural circuit organization and plasticity. Since axonal boutons are the presynaptic specializations of neural synapses, their locations can be used to determine the organization of neural circuitry, and in time-lapse studies, neural circuit dynamics. We propose simple geometric models for axonal boutons that account for variations in size, position, rotation and curvature of the axon in the vicinity of the bouton. We then use the normalized cross-correlation between the model and image data as a test statistic for bouton detection and position estimation. Thus, the problem is cast as a statistical detection problem where we can tune the algorithm parameters to maximize the probability of detection for a given probability of false alarm. For example, we can detect 81% of boutons with 9% false alarm from noisy, out of focus, images. We also present a novel method to characterize the orientation and elongation of a distribution of labeled boutons and we demonstrate its performance by applying it to a labeled data set.","PeriodicalId":184204,"journal":{"name":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2008.4540958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We propose a novel method for axonal bouton modeling and automated detection in populations of labeled neurons, as well as bouton distribution analysis for the study of neural circuit organization and plasticity. Since axonal boutons are the presynaptic specializations of neural synapses, their locations can be used to determine the organization of neural circuitry, and in time-lapse studies, neural circuit dynamics. We propose simple geometric models for axonal boutons that account for variations in size, position, rotation and curvature of the axon in the vicinity of the bouton. We then use the normalized cross-correlation between the model and image data as a test statistic for bouton detection and position estimation. Thus, the problem is cast as a statistical detection problem where we can tune the algorithm parameters to maximize the probability of detection for a given probability of false alarm. For example, we can detect 81% of boutons with 9% false alarm from noisy, out of focus, images. We also present a novel method to characterize the orientation and elongation of a distribution of labeled boutons and we demonstrate its performance by applying it to a labeled data set.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于神经回路组织和可塑性研究的轴突钮扣建模、检测和分布分析
我们提出了一种新的轴突钮扣建模和标记神经元群体自动检测方法,以及用于研究神经回路组织和可塑性的钮扣分布分析方法。由于轴突钮扣是神经突触的突触前特化,它们的位置可以用来确定神经回路的组织,并在延时研究中确定神经回路动力学。我们为轴突钮扣提出了简单的几何模型,该模型考虑了钮扣附近轴突的大小、位置、旋转和曲率的变化。然后,我们使用模型和图像数据之间的归一化互相关作为钮扣检测和位置估计的检验统计量。因此,这个问题被视为一个统计检测问题,我们可以调整算法参数,以最大化给定的假警报概率的检测概率。例如,我们可以从噪声、失焦图像中检测出81%的钮扣和9%的误报。我们还提出了一种新的方法来表征标记钮扣分布的方向和伸长,并通过将其应用于标记数据集来证明其性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EEG source localization by multi-planar analytic sensing 3D general lesion segmentation in CT Automated grading of breast cancer histopathology using spectral clustering with textural and architectural image features Iterative nonlinear least squares algorithms for direct reconstruction of parametric images from dynamic PET Pathological image segmentation for neuroblastoma using the GPU
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1