A 177 TOPS/W, Capacitor-based In-Memory Computing SRAM Macro with Stepwise-Charging/Discharging DACs and Sparsity-Optimized Bitcells for 4-Bit Deep Convolutional Neural Networks

Bo Zhang, Jyotishman Saikia, Jian Meng, Dewei Wang, Soon-Chan Kwon, Sungmeen Myung, Hyunsoo Kim, Sang Joon Kim, Jae-sun Seo, Mingoo Seok
{"title":"A 177 TOPS/W, Capacitor-based In-Memory Computing SRAM Macro with Stepwise-Charging/Discharging DACs and Sparsity-Optimized Bitcells for 4-Bit Deep Convolutional Neural Networks","authors":"Bo Zhang, Jyotishman Saikia, Jian Meng, Dewei Wang, Soon-Chan Kwon, Sungmeen Myung, Hyunsoo Kim, Sang Joon Kim, Jae-sun Seo, Mingoo Seok","doi":"10.1109/CICC53496.2022.9772781","DOIUrl":null,"url":null,"abstract":"Capacitor-based in-memory computing (IMC) SRAM has recently gained significant attention as it achieves high energy-efficiency for deep convolutional neural networks (DCNN) and robustness against PVT variations [1], [3], [7], [8]. To further improve energy-efficiency and robustness, we identify two places of bottleneck in prior capacitive IMC works, namely (i) input drivers (or digital-to-analog converters, DACs) which charge and discharge various capacitors, and (ii) analog-to-digital converters (ADCs) which convert analog voltage/current signals into digital values.","PeriodicalId":415990,"journal":{"name":"2022 IEEE Custom Integrated Circuits Conference (CICC)","volume":"179 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Custom Integrated Circuits Conference (CICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC53496.2022.9772781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Capacitor-based in-memory computing (IMC) SRAM has recently gained significant attention as it achieves high energy-efficiency for deep convolutional neural networks (DCNN) and robustness against PVT variations [1], [3], [7], [8]. To further improve energy-efficiency and robustness, we identify two places of bottleneck in prior capacitive IMC works, namely (i) input drivers (or digital-to-analog converters, DACs) which charge and discharge various capacitors, and (ii) analog-to-digital converters (ADCs) which convert analog voltage/current signals into digital values.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个177 TOPS/W,基于电容的内存计算SRAM宏,具有逐步充放电dac和稀疏优化的bitcell,用于4位深度卷积神经网络
基于电容的内存计算(IMC) SRAM最近受到了广泛关注,因为它实现了深度卷积神经网络(DCNN)的高能效和对PVT变化的鲁棒性[1],[3],[7],[8]。为了进一步提高能源效率和稳健性,我们确定了先前电容式IMC工作中的两个瓶颈,即(i)对各种电容器进行充电和放电的输入驱动器(或数模转换器,dac)和(ii)将模拟电压/电流信号转换为数字值的模数转换器(adc)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
All Rivers Flow to the Sea: A High Power Density Wireless Power Receiver with Split-Dual-Path Rectification and Hybrid-Quad-Path Step-Down Conversion A 400-to-12 V Fully Integrated Switched-Capacitor DC-DC Converter Achieving 119 mW/mm2 at 63.6 % Efficiency A 0.14nJ/b 200Mb/s Quasi-Balanced FSK Transceiver with Closed-Loop Modulation and Sideband Energy Detection A 2GHz voltage mode power scalable RF-Front-End with 2.5dB-NF and 0.5dBm-1dBCP High-Speed Digital-to-Analog Converter Design Towards High Dynamic Range
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1