Hauberk: Lightweight Silent Data Corruption Error Detector for GPGPU

Keun Soo YIM, C. Pham, Mushfiq Saleheen, Z. Kalbarczyk, R. Iyer
{"title":"Hauberk: Lightweight Silent Data Corruption Error Detector for GPGPU","authors":"Keun Soo YIM, C. Pham, Mushfiq Saleheen, Z. Kalbarczyk, R. Iyer","doi":"10.1109/IPDPS.2011.36","DOIUrl":null,"url":null,"abstract":"High performance and relatively low cost of GPU-based platforms provide an attractive alternative for general purpose high performance computing (HPC). However, the emerging HPC applications have usually stricter output cor-rectness requirements than typical GPU applications (i.e., 3D graphics). This paper first analyzes the error resiliency of GPGPU platforms using a fault injection tool we have devel-oped for commodity GPU devices. On average, 16-33% of in-jected faults cause silent data corruption (SDC) errors in the HPC programs executing on GPU. This SDC ratio is signifi-cantly higher than that measured in CPU programs (","PeriodicalId":355100,"journal":{"name":"2011 IEEE International Parallel & Distributed Processing Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"101","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Parallel & Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2011.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 101

Abstract

High performance and relatively low cost of GPU-based platforms provide an attractive alternative for general purpose high performance computing (HPC). However, the emerging HPC applications have usually stricter output cor-rectness requirements than typical GPU applications (i.e., 3D graphics). This paper first analyzes the error resiliency of GPGPU platforms using a fault injection tool we have devel-oped for commodity GPU devices. On average, 16-33% of in-jected faults cause silent data corruption (SDC) errors in the HPC programs executing on GPU. This SDC ratio is signifi-cantly higher than that measured in CPU programs (
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于GPGPU的轻量级静默数据损坏错误检测器
基于gpu的平台的高性能和相对低成本为通用高性能计算(HPC)提供了一个有吸引力的替代方案。然而,新兴的HPC应用程序通常比典型的GPU应用程序(即3D图形)有更严格的输出正确性要求。本文首先利用我们为商用GPU设备开发的故障注入工具分析了GPGPU平台的错误弹性。在GPU上执行的高性能计算程序中,平均有16-33%的注入故障导致静默数据损坏(SDC)错误。此SDC比率明显高于在CPU程序中测量的比率(
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large-Scale Semantic Concept Detection on Manycore Platforms for Multimedia Mining Two-Stage Tridiagonal Reduction for Dense Symmetric Matrices Using Tile Algorithms on Multicore Architectures A Study of Parallel Particle Tracing for Steady-State and Time-Varying Flow Fields Smith-Waterman Alignment of Huge Sequences with GPU in Linear Space CheCL: Transparent Checkpointing and Process Migration of OpenCL Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1