Yu Guo, Wei Yang, Jie Chen, Chunsheng Li, Xiaokun Sun
{"title":"A phase-preserving imaging algorithm for azimuth multi-channel spaceborne SAR data processing","authors":"Yu Guo, Wei Yang, Jie Chen, Chunsheng Li, Xiaokun Sun","doi":"10.1109/APSAR46974.2019.9048268","DOIUrl":null,"url":null,"abstract":"Azimuth multi-channels is widely used for high-resolution and wide-swath recently, especially for the purpose of interferometry processing. However, due to the reconstruction of non-uniformly azimuth signal, the classical phase-preserving algorithm does not work well. In this paper, a phase-preserving imaging algorithm for azimuth multi-channel spaceborne SAR data processing is proposed. Firstly, combined with the reconstruction operation, the effect on phase-preserving accuracy is analyzed in detail, with the discussion of the equivalent phase center position. Then, the novel phase-preserving algorithm is addressed, which can accurately compensate the phase errors, including the constant phase term, the linear phase term introduced by the shifting zero-Doppler frequency, the residual cubic phase error along range direction, and the nonuniform sampling phase error after range-compression. Finally, simulation results verify the effectiveness of the proposed algorithm.","PeriodicalId":377019,"journal":{"name":"2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSAR46974.2019.9048268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Azimuth multi-channels is widely used for high-resolution and wide-swath recently, especially for the purpose of interferometry processing. However, due to the reconstruction of non-uniformly azimuth signal, the classical phase-preserving algorithm does not work well. In this paper, a phase-preserving imaging algorithm for azimuth multi-channel spaceborne SAR data processing is proposed. Firstly, combined with the reconstruction operation, the effect on phase-preserving accuracy is analyzed in detail, with the discussion of the equivalent phase center position. Then, the novel phase-preserving algorithm is addressed, which can accurately compensate the phase errors, including the constant phase term, the linear phase term introduced by the shifting zero-Doppler frequency, the residual cubic phase error along range direction, and the nonuniform sampling phase error after range-compression. Finally, simulation results verify the effectiveness of the proposed algorithm.