{"title":"Magneto-mechanical deformation of \\ch{Ni50Mn28Ga22} shape memory alloy","authors":"Šimon Sukup, O. Heczko","doi":"10.51337/jasb20211227003","DOIUrl":null,"url":null,"abstract":"This study deals with pseudoplastic deformation of Ni50Mn28Ga22 alloy exhibiting mechanically and magnetically induced crystal reorientation. The new approach was introduced, taking into account crystals with single initial variant as well as nucleation of different orientation. Initially, observations from optical microscope and AFM (atomic force microscope) were correlated with the mechanical measurements from stress-strain machine to characterize boundaries between crystal variants. These observations were subsequently used to clarify the results of the mechanical deformation tests. By magnetizing samples in VSM (vibrating-sample magnetometer), analogous magnetic measurements to mechanical tests were conducted. The two types of measurements were then compared with respect to energy. The discrepancy found between the model and measurements is in agreement with previous studies. Some experimental factors and possible errors that may affect measurement have been discussed. Nevertheless, the observed differences remain an unresolved issue suggesting a need for a modification of the model.","PeriodicalId":161839,"journal":{"name":"Journal of the ASB Society","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the ASB Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51337/jasb20211227003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study deals with pseudoplastic deformation of Ni50Mn28Ga22 alloy exhibiting mechanically and magnetically induced crystal reorientation. The new approach was introduced, taking into account crystals with single initial variant as well as nucleation of different orientation. Initially, observations from optical microscope and AFM (atomic force microscope) were correlated with the mechanical measurements from stress-strain machine to characterize boundaries between crystal variants. These observations were subsequently used to clarify the results of the mechanical deformation tests. By magnetizing samples in VSM (vibrating-sample magnetometer), analogous magnetic measurements to mechanical tests were conducted. The two types of measurements were then compared with respect to energy. The discrepancy found between the model and measurements is in agreement with previous studies. Some experimental factors and possible errors that may affect measurement have been discussed. Nevertheless, the observed differences remain an unresolved issue suggesting a need for a modification of the model.