{"title":"Trajectory Planning Approach of Mobile Robot Dynamic Obstacle Avoidance with Multiple Constraints","authors":"Xuehao Sun, Shuchao Deng, Baohong Tong","doi":"10.1109/ICARM52023.2021.9536164","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel trajectory planning approach based on time elastic band to solve the problem of dynamic obstacle avoidance of mobile robot. Uncertain factors in the scenario need to be considered in trajectory planning. Thus, this approach includes multiple constraints, such as robot motion speed, motion state, and obstacles. First, to solve the optimal speed of the mobile robot, the workspace potential field must be established, and environmental information should be obtained to constrain the robot speed. Second, a costmap needs to be established to detect dynamic obstacles, and obstacle avoidance strategies based on the relative motion relationship between dynamic obstacles and the robot should be proposed to realize dynamic obstacle avoidance. Finally, by combining multiple constraints, the collision-free trajectory planning from the start point to the target point is completed, and the mobile robot realizes collision-free smooth motion. Experimental results show that this approach has satisfactory obstacle avoidance planning effects and superior kinematics characteristics and improves the comfort and safety of the mobile robot.","PeriodicalId":367307,"journal":{"name":"2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM)","volume":"156 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARM52023.2021.9536164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper proposes a novel trajectory planning approach based on time elastic band to solve the problem of dynamic obstacle avoidance of mobile robot. Uncertain factors in the scenario need to be considered in trajectory planning. Thus, this approach includes multiple constraints, such as robot motion speed, motion state, and obstacles. First, to solve the optimal speed of the mobile robot, the workspace potential field must be established, and environmental information should be obtained to constrain the robot speed. Second, a costmap needs to be established to detect dynamic obstacles, and obstacle avoidance strategies based on the relative motion relationship between dynamic obstacles and the robot should be proposed to realize dynamic obstacle avoidance. Finally, by combining multiple constraints, the collision-free trajectory planning from the start point to the target point is completed, and the mobile robot realizes collision-free smooth motion. Experimental results show that this approach has satisfactory obstacle avoidance planning effects and superior kinematics characteristics and improves the comfort and safety of the mobile robot.