Learning directed-acyclic-graphs from multiple genomic data sources

F. Nikolay, M. Pesavento
{"title":"Learning directed-acyclic-graphs from multiple genomic data sources","authors":"F. Nikolay, M. Pesavento","doi":"10.23919/EUSIPCO.2017.8081535","DOIUrl":null,"url":null,"abstract":"In this paper we consider the problem of learning the topology of a directed-acyclic-graph, that describes the interactions among a set of genes, based on noisy double knockout data and genetic-interactions-profile data. We propose a novel linear integer optimization approach to identify the complex biological dependencies among genes and to compute the topology of the directed-acyclic-graph that matches the data best. Finally, we apply a sequential scalability technique for large sets of genes along with our proposed algorithm, in order to provide statistically significant results for experimental data.","PeriodicalId":346811,"journal":{"name":"2017 25th European Signal Processing Conference (EUSIPCO)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2017.8081535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we consider the problem of learning the topology of a directed-acyclic-graph, that describes the interactions among a set of genes, based on noisy double knockout data and genetic-interactions-profile data. We propose a novel linear integer optimization approach to identify the complex biological dependencies among genes and to compute the topology of the directed-acyclic-graph that matches the data best. Finally, we apply a sequential scalability technique for large sets of genes along with our proposed algorithm, in order to provide statistically significant results for experimental data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从多个基因组数据源学习有向无环图
本文基于噪声双敲除数据和遗传相互作用谱数据,研究了描述一组基因之间相互作用的有向无环图的拓扑学习问题。我们提出了一种新的线性整数优化方法来识别基因之间复杂的生物依赖关系,并计算最匹配数据的有向无环图的拓扑结构。最后,我们将序列可扩展性技术应用于大型基因集以及我们提出的算法,以便为实验数据提供统计显着的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image deblurring using a perturbation-basec regularization approach Distributed computational load balancing for real-time applications Nonconvulsive epileptic seizures detection using multiway data analysis Performance improvement for wideband beamforming with white noise reduction based on sparse arrays Wideband DoA estimation based on joint optimisation of array and spatial sparsity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1