A method of automatic text summarisation based on long short-term memory

Wei Fang, Tianxiao Jiang, Ke Jiang, Feihong Zhang, Yewen Ding, Jack Sheng
{"title":"A method of automatic text summarisation based on long short-term memory","authors":"Wei Fang, Tianxiao Jiang, Ke Jiang, Feihong Zhang, Yewen Ding, Jack Sheng","doi":"10.1504/ijcse.2020.10029209","DOIUrl":null,"url":null,"abstract":"Deep learning is currently developing very fast in the NLP field and has achieved many amazing results in the past few years. Automatic text summarisation means that the abstract of the document is automatically summarised by a computer program without changing the original intention of the document. There are many application scenarios for automatic summarisation, such as news headline generation, scientific document abstract generation, search result segment generation, and product review summarisation. In the era of internet big data in the information explosion, if the short text can be employed to express the main connotation of information, it will undoubtedly help to alleviate the problem of information overload. In this paper, a model based on the long short-term memory network is presented to automatically analyse and summarise Chinese articles by using the seq2seq+attention models. Finally, the experimental results are attached and evaluated.","PeriodicalId":340410,"journal":{"name":"Int. J. Comput. Sci. Eng.","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Sci. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcse.2020.10029209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Deep learning is currently developing very fast in the NLP field and has achieved many amazing results in the past few years. Automatic text summarisation means that the abstract of the document is automatically summarised by a computer program without changing the original intention of the document. There are many application scenarios for automatic summarisation, such as news headline generation, scientific document abstract generation, search result segment generation, and product review summarisation. In the era of internet big data in the information explosion, if the short text can be employed to express the main connotation of information, it will undoubtedly help to alleviate the problem of information overload. In this paper, a model based on the long short-term memory network is presented to automatically analyse and summarise Chinese articles by using the seq2seq+attention models. Finally, the experimental results are attached and evaluated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于长短期记忆的文本自动摘要方法
深度学习目前在自然语言处理领域发展非常迅速,在过去的几年里取得了许多惊人的成果。自动文本摘要是指在不改变文件本意的情况下,由计算机程序自动对文件摘要进行摘要。自动摘要的应用场景很多,如新闻标题生成、科学文献摘要生成、搜索结果片段生成、产品评论摘要等。在信息爆炸的互联网大数据时代,如果能用短文本来表达信息的主要内涵,无疑有助于缓解信息过载的问题。本文提出了一种基于长短期记忆网络的中文文章自动分析和摘要模型,该模型采用seq2seq+注意力模型。最后附上实验结果并进行评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ECC-based lightweight mutual authentication protocol for fog enabled IoT system using three-way authentication procedure Gene selection and classification combining information gain ratio with fruit fly optimisation algorithm for single-cell RNA-seq data Attitude control of an unmanned patrol helicopter based on an optimised spiking neural membrane system for use in coal mines CEMP-IR: a novel location aware cache invalidation and replacement policy Prediction of consumer preference for the bottom of the pyramid using EEG-based deep model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1