Macro Demand Spatial Approach (MDSA) with principal component analysis (PCA) on spatial demand forecasting for industrial area in transmission planning

S. Sasmono, N. Sinisuka, M. W. Atmopawiro, D. Darwanto
{"title":"Macro Demand Spatial Approach (MDSA) with principal component analysis (PCA) on spatial demand forecasting for industrial area in transmission planning","authors":"S. Sasmono, N. Sinisuka, M. W. Atmopawiro, D. Darwanto","doi":"10.1109/ICITEED.2013.6676272","DOIUrl":null,"url":null,"abstract":"Macro Demand Spatial Approach (MDSA) is an approach introduced in long time electricity demand forecasting considering location. It will be used at transmission planning and policy decision on electricity infrastructure development in a region. In the model, MDSA combined with principal component analysis (PCA) method to determine the variables that affecting electricity demand in industrial area. The variables are different for each load sector. Hypothesis on unique variables affecting electricity demand on every load sector in the industrial area were analyzed with qualitative methods and references. The variables have no significant effect can be reduced by using PCA. The generated models tested to assess whether it still at the range of confidence level of electricity demand forecasting. At the case study, generated model for South Sumatra Subsystem as a part of Sumatra System is still in the range of confidence level.","PeriodicalId":204082,"journal":{"name":"2013 International Conference on Information Technology and Electrical Engineering (ICITEE)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Information Technology and Electrical Engineering (ICITEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITEED.2013.6676272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Macro Demand Spatial Approach (MDSA) is an approach introduced in long time electricity demand forecasting considering location. It will be used at transmission planning and policy decision on electricity infrastructure development in a region. In the model, MDSA combined with principal component analysis (PCA) method to determine the variables that affecting electricity demand in industrial area. The variables are different for each load sector. Hypothesis on unique variables affecting electricity demand on every load sector in the industrial area were analyzed with qualitative methods and references. The variables have no significant effect can be reduced by using PCA. The generated models tested to assess whether it still at the range of confidence level of electricity demand forecasting. At the case study, generated model for South Sumatra Subsystem as a part of Sumatra System is still in the range of confidence level.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合主成分分析(PCA)的宏观需求空间预测方法在工业区域输电规划中的应用
宏观需求空间法是一种考虑位置的长期电力需求预测方法。它将用于一个地区的输电规划和电力基础设施发展的政策决定。在模型中,MDSA结合主成分分析(PCA)方法确定影响工业区电力需求的变量。每个负载部门的变量是不同的。采用定性方法和参考文献对影响工业区域各负荷部门电力需求的唯一变量假设进行了分析。采用主成分分析法对影响不显著的变量进行了化简。对生成的模型进行了测试,以评估其是否仍处于电力需求预测的置信水平范围内。在案例研究中,作为苏门答腊系统一部分的南苏门答腊子系统生成的模型仍在置信范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Thermal unit commitment solution using genetic algorithm combined with the principle of tabu search and priority list method Using estimated arithmetic means of accuracies to select features for face-based gender classification Analysis of factors influencing the mobile technology acceptance for library information services: Conceptual model News recommendation in Indonesian language based on user click behavior A kinetic energy-based feature for unsupervised motion clustering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1