{"title":"Counting cases in marching cubes: toward a generic algorithm for producing substitopes","authors":"D. Banks, S. Linton","doi":"10.1109/VISUAL.2003.1250354","DOIUrl":null,"url":null,"abstract":"We describe how to count the cases that arise in a family of visualization techniques, including marching cubes, sweeping simplices, contour meshing, interval volumes, and separating surfaces. Counting the cases is the first step toward developing a generic visualization algorithm to produce substitopes (geometric substitution of polytopes). We demonstrate the method using a software system (\"GAP\") for computational group theory. The case-counts are organized into a table that provides taxonomy of members of the family; numbers in the table are derived from actual lists of cases, which are computed by our methods. The calculation confirms previously reported case-counts for large dimensions that are too large to check by hand, and predicts the number of cases that will arise in algorithms that have not yet been invented.","PeriodicalId":372131,"journal":{"name":"IEEE Visualization, 2003. VIS 2003.","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Visualization, 2003. VIS 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISUAL.2003.1250354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40
Abstract
We describe how to count the cases that arise in a family of visualization techniques, including marching cubes, sweeping simplices, contour meshing, interval volumes, and separating surfaces. Counting the cases is the first step toward developing a generic visualization algorithm to produce substitopes (geometric substitution of polytopes). We demonstrate the method using a software system ("GAP") for computational group theory. The case-counts are organized into a table that provides taxonomy of members of the family; numbers in the table are derived from actual lists of cases, which are computed by our methods. The calculation confirms previously reported case-counts for large dimensions that are too large to check by hand, and predicts the number of cases that will arise in algorithms that have not yet been invented.