Leveraging Large Language Models for the Generation of Novel Metaheuristic Optimization Algorithms

Michal Pluhacek, Anezka Kazikova, T. Kadavy, Adam Viktorin, R. Šenkeřík
{"title":"Leveraging Large Language Models for the Generation of Novel Metaheuristic Optimization Algorithms","authors":"Michal Pluhacek, Anezka Kazikova, T. Kadavy, Adam Viktorin, R. Šenkeřík","doi":"10.1145/3583133.3596401","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the potential of using Large Language Models (LLMs) such as GPT-4 to generate novel hybrid swarm intelligence optimization algorithms. We use the LLM to identify and decompose six well-performing swarm algorithms for continuous optimization: Particle Swarm Optimization (PSO), Cuckoo Search (CS), Artificial Bee Colony (ABC), Grey Wolf Optimizer (GWO), Self-Organizing Migrating Algorithm (SOMA), and Whale Optimization Algorithm (WOA). We leverage GPT-4 to propose a hybrid algorithm that combines the strengths of these techniques for two distinct use-case scenarios. Our focus is on the process itself and various challenges that emerge during the use of GPT-4 to fulfill a series of set tasks. Furthermore, we discuss the potential impact of LLM-generated algorithms in the metaheuristics domain and explore future research directions.","PeriodicalId":422029,"journal":{"name":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3583133.3596401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we investigate the potential of using Large Language Models (LLMs) such as GPT-4 to generate novel hybrid swarm intelligence optimization algorithms. We use the LLM to identify and decompose six well-performing swarm algorithms for continuous optimization: Particle Swarm Optimization (PSO), Cuckoo Search (CS), Artificial Bee Colony (ABC), Grey Wolf Optimizer (GWO), Self-Organizing Migrating Algorithm (SOMA), and Whale Optimization Algorithm (WOA). We leverage GPT-4 to propose a hybrid algorithm that combines the strengths of these techniques for two distinct use-case scenarios. Our focus is on the process itself and various challenges that emerge during the use of GPT-4 to fulfill a series of set tasks. Furthermore, we discuss the potential impact of LLM-generated algorithms in the metaheuristics domain and explore future research directions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用大型语言模型生成新的元启发式优化算法
在本文中,我们研究了使用大型语言模型(LLMs)如GPT-4来生成新的混合群智能优化算法的潜力。我们使用LLM识别并分解了六种性能良好的连续优化算法:粒子群优化(PSO)、布谷鸟搜索(CS)、人工蜂群(ABC)、灰狼优化(GWO)、自组织迁移算法(SOMA)和鲸鱼优化算法(WOA)。我们利用GPT-4提出了一种混合算法,将这些技术的优势结合起来,适用于两种不同的用例场景。我们的重点是过程本身以及在使用GPT-4完成一系列既定任务期间出现的各种挑战。此外,我们讨论了llm生成的算法在元启发式领域的潜在影响,并探讨了未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Graph Q-learning Assisted Ant Colony Optimization for Vehicle Routing Problems with Time Windows Iterative Structure-Based Genetic Programming for Neural Architecture Search Bayesian Optimization For Choice Data Exploring Adaptive Components of SOMA Evaluation of the impact of various modifications to CMA-ES that facilitate its theoretical analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1