Pd Metallene Aerogels with Single-Atom W Doping for Selective Ethanol Oxidation

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2022-11-28 DOI:10.1021/acsnano.2c09270
Hengjia Wang, Huiling Zheng, Ling Ling, Qie Fang, Lei Jiao, Lirong Zheng, Ying Qin, Zhen Luo, Wenling Gu, Weiyu Song* and Chengzhou Zhu*, 
{"title":"Pd Metallene Aerogels with Single-Atom W Doping for Selective Ethanol Oxidation","authors":"Hengjia Wang,&nbsp;Huiling Zheng,&nbsp;Ling Ling,&nbsp;Qie Fang,&nbsp;Lei Jiao,&nbsp;Lirong Zheng,&nbsp;Ying Qin,&nbsp;Zhen Luo,&nbsp;Wenling Gu,&nbsp;Weiyu Song* and Chengzhou Zhu*,&nbsp;","doi":"10.1021/acsnano.2c09270","DOIUrl":null,"url":null,"abstract":"<p >The development of advanced electrocatalysts with satisfactory C1 pathway selectivity for the ethanol oxidation reaction (EOR) is critical. Herein, a bubbling CO-induced gelation method is developed in acetic acid at 50 °C to construct single-atom W-doped Pd metallene aerogels (denoted as SA W–Pd MAs) within 1 h. In light of the metallene structural advantages of noble metal aerogels and single-atom W decoration, the resultant SA W–Pd MAs exhibit an outstanding EOR performance with high C1 pathway selectivity. Density functional theory calculations validate that the SA W–Pd MAs greatly improve the formation of the CH<sub>3</sub>O intermediate and the transformation of poisonous CO species to CO<sub>2</sub>, thus resulting in high C1 pathway selectivity. Therefore, this work not only offers an effective gelation method to fabricate noble metal aerogels with atomic-scale building blocks but also presents guidance to develop high-efficiency EOR electrocatalysts.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.2c09270","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 18

Abstract

The development of advanced electrocatalysts with satisfactory C1 pathway selectivity for the ethanol oxidation reaction (EOR) is critical. Herein, a bubbling CO-induced gelation method is developed in acetic acid at 50 °C to construct single-atom W-doped Pd metallene aerogels (denoted as SA W–Pd MAs) within 1 h. In light of the metallene structural advantages of noble metal aerogels and single-atom W decoration, the resultant SA W–Pd MAs exhibit an outstanding EOR performance with high C1 pathway selectivity. Density functional theory calculations validate that the SA W–Pd MAs greatly improve the formation of the CH3O intermediate and the transformation of poisonous CO species to CO2, thus resulting in high C1 pathway selectivity. Therefore, this work not only offers an effective gelation method to fabricate noble metal aerogels with atomic-scale building blocks but also presents guidance to develop high-efficiency EOR electrocatalysts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单原子W掺杂Pd金属烯气凝胶用于选择性乙醇氧化
开发具有良好C1途径选择性的新型乙醇氧化反应电催化剂至关重要。本文采用50℃乙酸中co诱导气泡凝胶法,在1 h内构建了单原子W掺杂Pd金属烯气凝胶(SA W- Pd MAs)。鉴于贵金属气凝胶的金属烯结构优势和单原子W修饰,所得SA W- Pd MAs具有优异的提高采收率性能和高C1途径选择性。密度泛函理论计算证实,SA W-Pd MAs极大地促进了ch30中间体的形成和有毒CO向CO2的转化,从而产生了高的C1途径选择性。因此,本研究不仅为制备原子尺度的贵金属气凝胶提供了一种有效的凝胶化方法,而且对开发高效的EOR电催化剂具有指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Simultaneous Protein and RNA Analysis in Single Extracellular Vesicles, Including Viruses Engineering Injectable Coassembled Hydrogel by Photothermal Driven Chitosan-Stabilized MoS2 Nanosheets for Infected Wound Healing Atomic Structure and 3D Shape of a Multibranched Plasmonic Nanostar from a Single Spatially Resolved Electron Diffraction Map Ion-Anchored Strategy for MnO2/Mn2+ Chemistry without “Dead Mn” and Corrosion Engineering AIEgens-Tethered Gold Nanoparticles with Enzymatic Dual Self-Assembly for Amplified Cancer-Specific Phototheranostics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1