InfluenceRank: A machine learning approach to measure influence of Twitter users

Ashish Nargundkar, Y. S. Rao
{"title":"InfluenceRank: A machine learning approach to measure influence of Twitter users","authors":"Ashish Nargundkar, Y. S. Rao","doi":"10.1109/ICRTIT.2016.7569535","DOIUrl":null,"url":null,"abstract":"We devise a system for measuring influence of Twitter users, which we call InfluenceRank, based on certain features extracted from their Twitter profiles and tweets authored over the duration of two months. As in the real world, influence of a user on social media may be judged by the engagement they drive through the content they publish. For a tweet, engagement can be most obviously measured by the number of retweets (RTs), favourites and replies it gets. Our system comprises of a regression based machine learning approach with InfluenceRank as the predictor variable against the set of our proposed features. The regression model has shown reasonable accuracy despite being fit on limited data.","PeriodicalId":351133,"journal":{"name":"2016 International Conference on Recent Trends in Information Technology (ICRTIT)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Recent Trends in Information Technology (ICRTIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRTIT.2016.7569535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

We devise a system for measuring influence of Twitter users, which we call InfluenceRank, based on certain features extracted from their Twitter profiles and tweets authored over the duration of two months. As in the real world, influence of a user on social media may be judged by the engagement they drive through the content they publish. For a tweet, engagement can be most obviously measured by the number of retweets (RTs), favourites and replies it gets. Our system comprises of a regression based machine learning approach with InfluenceRank as the predictor variable against the set of our proposed features. The regression model has shown reasonable accuracy despite being fit on limited data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
InfluenceRank:一种衡量Twitter用户影响力的机器学习方法
我们设计了一个衡量Twitter用户影响力的系统,我们称之为InfluenceRank,基于从他们的Twitter个人资料和两个月内撰写的推文中提取的某些特征。就像在现实世界中一样,用户在社交媒体上的影响力可以通过他们发布的内容所带来的参与度来判断。对于一条推文来说,参与度最明显的衡量标准是转发(RTs)、收藏夹和回复的数量。我们的系统包括基于回归的机器学习方法,以InfluenceRank作为预测变量,针对我们提出的特征集。该回归模型虽然在有限的数据上具有一定的拟合精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Elaborative survey on storage technologies for XML big data: A real-time approach Design space exploration for IoT based traffic density indication system A novel image steganographic technique using fast fourier transform InfluenceRank: A machine learning approach to measure influence of Twitter users Kalman filter based phase delay reduction technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1