A Novel Dataset for Fake Android Anti-Malware Detection

Saeed Seraj, Michalis Pavlidis, Nikolaos Polatidis
{"title":"A Novel Dataset for Fake Android Anti-Malware Detection","authors":"Saeed Seraj, Michalis Pavlidis, Nikolaos Polatidis","doi":"10.1145/3405962.3405980","DOIUrl":null,"url":null,"abstract":"Today in the world people are able to get all types of Android applications (apps) from the app store or various sources over the Internet. A large number of apps is being produced daily, some of which are infected with malware. Thus, the use of anti-malware identification tools is essential. At the same time, a number of attackers who exploit a number of anti-malwares have been doing obtaining information from mobile phones in various ways, such as decompiling or infecting anti-malware. Therefore, in this paper, we developed a classification dataset from collected anti-malware data looking for fraudulent anti-malware products. Additionally, we applied various machine learning algorithms and we propose a combination of algorithms which provides high accuracy over various evaluation tests, showing that our approach is both practical and effective.","PeriodicalId":247414,"journal":{"name":"Proceedings of the 10th International Conference on Web Intelligence, Mining and Semantics","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th International Conference on Web Intelligence, Mining and Semantics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3405962.3405980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Today in the world people are able to get all types of Android applications (apps) from the app store or various sources over the Internet. A large number of apps is being produced daily, some of which are infected with malware. Thus, the use of anti-malware identification tools is essential. At the same time, a number of attackers who exploit a number of anti-malwares have been doing obtaining information from mobile phones in various ways, such as decompiling or infecting anti-malware. Therefore, in this paper, we developed a classification dataset from collected anti-malware data looking for fraudulent anti-malware products. Additionally, we applied various machine learning algorithms and we propose a combination of algorithms which provides high accuracy over various evaluation tests, showing that our approach is both practical and effective.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
伪Android反恶意软件检测的新数据集
今天在世界上,人们可以从应用程序商店或互联网上的各种来源获得所有类型的Android应用程序(应用程序)。每天都有大量的应用程序诞生,其中一些应用程序感染了恶意软件。因此,使用反恶意软件识别工具是必不可少的。与此同时,一些利用反恶意软件的攻击者一直在以各种方式从手机中获取信息,例如反编译或感染反恶意软件。因此,在本文中,我们从收集的反恶意软件数据中开发了一个分类数据集,以寻找欺诈性的反恶意软件产品。此外,我们应用了各种机器学习算法,并提出了一种算法组合,在各种评估测试中提供高精度,表明我们的方法既实用又有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Splitting the Web Analytics Atom: From Page Metrics and KPIs to Sub-Page Metrics and KPIs SciPuRe BREXIT Election: Forecasting a Conservative Party Victory through the Pound using ARIMA and Facebook's Prophet Concept Drift Detection on Data Stream for Revising DBSCAN Cluster Adaptive Error Prediction for Production Lines with Unknown Dependencies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1