FIFE: an Infrastructure-as-Code Based Framework for Evaluating VM Instances from Multiple Clouds

Yuhui Lin, J. Briggs, A. Barker
{"title":"FIFE: an Infrastructure-as-Code Based Framework for Evaluating VM Instances from Multiple Clouds","authors":"Yuhui Lin, J. Briggs, A. Barker","doi":"10.1109/UCC48980.2020.00028","DOIUrl":null,"url":null,"abstract":"To choose an optimal VM, Cloud users often need to step a process of evaluating the performance of VMs by benchmarking or running a black-box search technique such as Bayesian optimisation. To facilitate the process, we develop a generic and highly configurable Framework with Infrastructure-as-Code (IaC) support For VM Evaluation (FIFE). FIFE abstract the process as a searcher, selector, deployer and interpreter. It allows users to specify the target VM sets and evaluation objectives with JSON to automate the process. We demonstrate the use of the framework by setting up of a Bayesian optimization VM searching system. We evaluate the system with various experimental setups, i.e. different combinations of cloud provider numbers and parallel search. The results show that the search efficiency remains the same for the case when the search space is consist of VM from multiple cloud providers, and the parallel search can significantly reduce search time when the number of parallelisation is set properly.","PeriodicalId":125849,"journal":{"name":"2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC)","volume":"209 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UCC48980.2020.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

To choose an optimal VM, Cloud users often need to step a process of evaluating the performance of VMs by benchmarking or running a black-box search technique such as Bayesian optimisation. To facilitate the process, we develop a generic and highly configurable Framework with Infrastructure-as-Code (IaC) support For VM Evaluation (FIFE). FIFE abstract the process as a searcher, selector, deployer and interpreter. It allows users to specify the target VM sets and evaluation objectives with JSON to automate the process. We demonstrate the use of the framework by setting up of a Bayesian optimization VM searching system. We evaluate the system with various experimental setups, i.e. different combinations of cloud provider numbers and parallel search. The results show that the search efficiency remains the same for the case when the search space is consist of VM from multiple cloud providers, and the parallel search can significantly reduce search time when the number of parallelisation is set properly.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FIFE:一个基于基础架构即代码的框架,用于评估来自多云的VM实例
为了选择最佳的虚拟机,云用户通常需要通过基准测试或运行黑盒搜索技术(如贝叶斯优化)来评估虚拟机的性能。为了促进这一过程,我们开发了一个通用的、高度可配置的框架,支持虚拟机评估(FIFE)的基础设施即代码(IaC)。FIFE将进程抽象为搜索器、选择器、部署器和解释器。它允许用户使用JSON指定目标VM集和评估目标,以实现流程自动化。我们通过建立一个贝叶斯优化虚拟机搜索系统来演示该框架的使用。我们用不同的实验设置来评估系统,即云提供商编号和并行搜索的不同组合。结果表明,当搜索空间由来自多个云提供商的VM组成时,搜索效率保持不变,并且在适当设置并行化数的情况下,并行搜索可以显著减少搜索时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blockchain Mobility Solution for Charging Transactions of Electrical Vehicles Open-source Serverless Architectures: an Evaluation of Apache OpenWhisk Explaining probabilistic Artificial Intelligence (AI) models by discretizing Deep Neural Networks Message from the B2D2LM 2020 Workshop Chairs Dynamic Network Slicing in Fog Computing for Mobile Users in MobFogSim
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1